

 MANPAGES

Skip Quicknav

	Index
	About Manpages
	FAQ
	Service Information

 / stretch

 / libcam-pdf-perl

 / CAM::PDF(3pm)

links

	
language-indep link

	
package tracker

	
raw man page

table of contents

	
 NAME

	
 LICENSE

	
 SYNOPSIS

	
 DESCRIPTION

	
 API

	
 FUNCTIONS

	
 COMPATIBILITY

	
 PERFORMANCE

	
 SEE ALSO

	
 INTERNALS

	
 AUTHOR

	
 ACKNOWLEDGMENTS

other versions

	
stretch 1.60-3

	
testing 1.60-3

	
unstable 1.60-3

Scroll to navigation

	CAM::PDF(3pm)	User Contributed Perl Documentation	CAM::PDF(3pm)

NAME¶

CAM::PDF - PDF manipulation library

LICENSE¶

Copyright 2002-2006 Clotho Advanced Media, Inc., <http://www.clotho.com/>
Copyright 2007-2008 Chris Dolan

This library is free software; you can redistribute it and/or
 modify it under the same terms as Perl itself.

SYNOPSIS¶

 use CAM::PDF;

 my $pdf = CAM::PDF->new('test1.pdf');

 my $page1 = $pdf->getPageContent(1);
 [... mess with page ...]
 $pdf->setPageContent(1, $page1);
 [... create some new content ...]
 $pdf->appendPageContent(1, $newcontent);

 my $anotherpdf = CAM::PDF->new('test2.pdf');
 $pdf->appendPDF($anotherpdf);

 my @prefs = $pdf->getPrefs();
 $prefs[$CAM::PDF::PREF_OPASS] = 'mypassword';
 $prefs[$CAM::PDF::PREF_UPASS] = 'mypassword';
 $pdf->setPrefs(@prefs);

 $pdf->cleanoutput('out1.pdf');
 print $pdf->toPDF();

Many example programs are included in this distribution to do
 useful tasks. See the "bin"
 subdirectory.

DESCRIPTION¶

This package reads and writes any document that conforms to the PDF
 specification generously provided by Adobe at
 <http://partners.adobe.com/public/developer/pdf/index_reference.html>
 (link last checked Oct 2005).
The file format through PDF 1.5 is well-supported, with the
 exception of the "linearized" or "optimized" output
 format, which this module can read but not write. Many specific aspects of
 the document model are not manipulable with this package (like fonts), but
 if the input document is correctly written, then this module will preserve
 the model integrity.

The PDF writing feature saves as PDF 1.4-compatible. That means
 that we cannot write compressed object streams. The consequence is that
 reading and then writing a PDF 1.5+ document may enlarge the resulting file
 by a fair margin.

This library grants you some power over the PDF security model.
 Note that applications editing PDF documents via this library MUST respect
 the security preferences of the document. Any violation of this respect is
 contrary to Adobe's intellectual property position, as stated in the
 reference manual at the above URL.

Technical detail regarding corrupt PDFs: This library adheres
 strictly to the PDF specification. Adobe's Acrobat Reader is more lenient,
 allowing some corrupted PDFs to be viewable. Therefore, it is possible that
 some PDFs may be readable by Acrobat that are illegible to this library. In
 particular, files which have had line endings converted to or from
 DOS/Windows style (i.e. CR-NL) may be rendered unusable even though Acrobat
 does not complain. Future library versions may relax the parser, but not
 yet.

API¶

Functions intended to be used externally¶

 $self = CAM::PDF->new(content | filename | '-')
 $self->toPDF()
 $self->needsSave()
 $self->save()
 $self->cleansave()
 $self->output(filename | '-')
 $self->cleanoutput(filename | '-')
 $self->previousRevision()
 $self->allRevisions()
 $self->preserveOrder()
 $self->appendObject(olddoc, oldnum, [follow=(1|0)])
 $self->replaceObject(newnum, olddoc, oldnum, [follow=(1|0)])
 (olddoc can be undef in the above for adding new objects)
 $self->numPages()
 $self->getPageText(pagenum)
 $self->getPageDimensions(pagenum)
 $self->getPageContent(pagenum)
 $self->setPageContent(pagenum, content)
 $self->appendPageContent(pagenum, content)
 $self->deletePage(pagenum)
 $self->deletePages(pagenum, pagenum, ...)
 $self->extractPages(pagenum, pagenum, ...)
 $self->appendPDF(CAM::PDF object)
 $self->prependPDF(CAM::PDF object)
 $self->wrapString(string, width, fontsize, page, fontlabel)
 $self->getFontNames(pagenum)
 $self->addFont(page, fontname, fontlabel, [fontmetrics])
 $self->deEmbedFont(page, fontname, [newfontname])
 $self->deEmbedFontByBaseName(page, basename, [newfont])
 $self->getPrefs()
 $self->setPrefs()
 $self->canPrint()
 $self->canModify()
 $self->canCopy()
 $self->canAdd()
 $self->getFormFieldList()
 $self->fillFormFields(fieldname, value, [fieldname, value, ...])
 or $self->fillFormFields(%values)
 $self->clearFormFieldTriggers(fieldname, fieldname, ...)

Note: 'clean' as in cleansave() and cleanobject()
 means write a fresh PDF document. The alternative (e.g. save())
 reuses the existing doc and just appends to it. Also note that 'clean'
 functions sort the objects numerically. If you prefer that the new PDF docs
 more closely resemble the old ones, call preserveOrder() before
 cleansave() or cleanobject().

Slightly less external, but useful, functions¶

 $self->toString()
 $self->getPage(pagenum)
 $self->getFont(pagenum, fontname)
 $self->getFonts(pagenum)
 $self->getStringWidth(fontdict, string)
 $self->getFormField(fieldname)
 $self->getFormFieldDict(object)
 $self->isLinearized()
 $self->decodeObject(objectnum)
 $self->decodeAll(any-node)
 $self->decodeOne(dict-node)
 $self->encodeObject(objectnum, filter)
 $self->encodeOne(any-node, filter)
 $self->changeString(obj-node, hashref)

Deeper utilities¶

 $self->pageAddName(pagenum, name, objectnum)
 $self->getPageObjnum(pagenum)
 $self->getPropertyNames(pagenum)
 $self->getProperty(pagenum, propname)
 $self->getValue(any-node)
 $self->dereference(objectnum) or $self->dereference(name,pagenum)
 $self->deleteObject(objectnum)
 $self->copyObject(obj-node)
 $self->cacheObjects()
 $self->setObjNum(obj-node, num)
 $self->getRefList(obj-node)
 $self->changeRefKeys(obj-node, hashref)

More rarely needed utilities¶

 $self->getObjValue(objectnum)

Routines that should not be called¶

 $self->_startdoc()
 $self->delinearlize()
 $self->build*()
 $self->parse*()
 $self->write*()
 $self->*CB()
 $self->traverse()
 $self->fixDecode()
 $self->abbrevInlineImage()
 $self->unabbrevInlineImage()
 $self->cleanse()
 $self->clean()
 $self->createID()

FUNCTIONS¶

Object creation/manipulation¶

	$doc->new($package, $content)
	
	$doc->new($package, $content, $ownerpass, $userpass)
	
	$doc->new($package, $content, $ownerpass, $userpass, $prompt)
	
	$doc->new($package, $content, $ownerpass, $userpass, $options)
	Instantiate a new CAM::PDF object. $content can be
 a document in a string, a filename, or '-'. The latter indicates that the
 document should be read from standard input. If the document is password
 protected, the passwords should be passed as additional arguments. If they
 are not known, a boolean $prompt argument allows
 the programmer to suggest that the constructor prompt the user for a
 password. This is rudimentary prompting: passwords are in the clear on the
 console.
 This constructor takes an optional final argument which is a
 hash reference. This hash can contain any of the following optional
 parameters:

	prompt_for_password => $boolean
	This is the same as the $prompt argument described
 above.
	fault_tolerant => $boolean
	This flag causes the instance to be more lenient when reading the input
 PDF. Currently, this only affects PDFs which cannot be successfully
 decrypted.

	$doc->toPDF()
	Serializes the data structure as a PDF document stream and returns as in a
 scalar.
	$doc->toString()
	Returns a serialized representation of the data structure. Implemented via
 Data::Dumper.

Document reading¶

(all of these functions are intended for internal only)
	$doc->getRootDict()
	Returns the Root dictionary for the PDF.
	$doc->getPagesDict()
	Returns the root Pages dictionary for the PDF.
	$doc->parseObj($string)
	Use parseAny() instead of this, if possible.
 Given a fragment of PDF page content, parse it and return an
 object Node. This can be called as a class method in most circumstances,
 but is intended as an instance method.

	$doc->parseInlineImage($string)
	
	$doc->parseInlineImage($string, $objnum)
	
	$doc->parseInlineImage($string, $objnum, $gennum)
	Given a fragment of PDF page content, parse it and return an object Node.
 This can be called as a class method in some cases, but is intended as an
 instance method.
	$doc->writeInlineImage($objectnode)
	This is the inverse of parseInlineImage(), intended for use only in
 the CAM::PDF::Content class.
	$doc->parseStream($string, $objnum, $gennum, $dictnode)
	This should only be used by parseObj(), or other specialized cases.
 Given a fragment of PDF page content, parse it and return a
 stream Node. This can be called as a class method in most circumstances,
 but is intended as an instance method.

 The dictionary Node argument is typically the body of the
 object Node that precedes this stream.

	$doc->parseDict($string)
	
	$doc->parseDict($string, $objnum)
	
	$doc->parseDict($string, $objnum, $gennum)
	Use parseAny() instead of this, if possible.
 Given a fragment of PDF page content, parse it and return an
 dictionary Node. This can be called as a class method in most
 circumstances, but is intended as an instance method.

	$doc->parseArray($string)
	
	$doc->parseArray($string, $objnum)
	
	$doc->parseArray($string, $objnum, $gennum)
	Use parseAny() instead of this, if possible.
 Given a fragment of PDF page content, parse it and return an
 array Node. This can be called as a class or instance method.

	$doc->parseLabel($string)
	
	$doc->parseLabel($string, $objnum)
	
	$doc->parseLabel($string, $objnum, $gennum)
	Use parseAny() instead of this, if possible.
 Given a fragment of PDF page content, parse it and return a
 label Node. This can be called as a class or instance method.

	$doc->parseRef($string)
	
	$doc->parseRef($string, $objnum)
	
	$doc->parseRef($string, $objnum, $gennum)
	Use parseAny() instead of this, if possible.
 Given a fragment of PDF page content, parse it and return a
 reference Node. This can be called as a class or instance method.

	$doc->parseNum($string)
	
	$doc->parseNum($string, $objnum)
	
	$doc->parseNum($string, $objnum, $gennum)
	Use parseAny() instead of this, if possible.
 Given a fragment of PDF page content, parse it and return a
 number Node. This can be called as a class or instance method.

	$doc->parseString($string)
	
	$doc->parseString($string, $objnum)
	
	$doc->parseString($string, $objnum, $gennum)
	Use parseAny() instead of this, if possible.
 Given a fragment of PDF page content, parse it and return a
 string Node. This can be called as a class or instance method.

	$doc->parseHexString($string)
	
	$doc->parseHexString($string, $objnum)
	
	$doc->parseHexString($string, $objnum, $gennum)
	Use parseAny() instead of this, if possible.
 Given a fragment of PDF page content, parse it and return a
 hex string Node. This can be called as a class or instance method.

	$doc->parseBoolean($string)
	
	$doc->parseBoolean($string, $objnum)
	
	$doc->parseBoolean($string, $objnum, $gennum)
	Use parseAny() instead of this, if possible.
 Given a fragment of PDF page content, parse it and return a
 boolean Node. This can be called as a class or instance method.

	$doc->parseNull($string)
	
	$doc->parseNull($string, $objnum)
	
	$doc->parseNull($string, $objnum, $gennum)
	Use parseAny() instead of this, if possible.
 Given a fragment of PDF page content, parse it and return a
 null Node. This can be called as a class or instance method.

	$doc->parseAny($string)
	
	$doc->parseAny($string, $objnum)
	
	$doc->parseAny($string, $objnum, $gennum)
	Given a fragment of PDF page content, parse it and return a Node of the
 appropriate type. This can be called as a class or instance method.

Data Accessors¶

	$doc->getValue($object)
	For INTERNAL use
 Dereference a data object, return a value. Given an node
 object of any kind, returns raw scalar object: hashref, arrayref,
 string, number. This function follows all references, and descends into
 all objects.

	$doc->getObjValue($objectnum)
	For INTERNAL use
 Dereference a data object, and return a value. Behaves just
 like the getValue() function, but used when all you know is the
 object number.

	$doc->dereference($objectnum)
	
	$doc->dereference($name, $pagenum)
	For INTERNAL use
 Dereference a data object, return a PDF object as a node. This
 function makes heavy use of the internal object cache. Most (if not all)
 object requests should go through this function.

 $name should look something like
 '/R12'.

	$doc->getPropertyNames($pagenum)
	
	$doc->getProperty($pagenum, $propertyname)
	Each PDF page contains a list of resources that it uses (images, fonts,
 etc). getPropertyNames() returns an array of the names of those
 resources. getProperty() returns a node representing a named
 property (most likely a reference node).
	$doc->getFont($pagenum, $fontname)
	For INTERNAL use
 Returns a dictionary for a given font identified by its label,
 referenced by page.

	$doc->getFontNames($pagenum)
	For INTERNAL use
 Returns a list of fonts for a given page.

	$doc->getFonts($pagenum)
	For INTERNAL use
 Returns an array of font objects for a given page.

	$doc->getFontByBaseName($pagenum, $fontname)
	For INTERNAL use
 Returns a dictionary for a given font, referenced by page and
 the name of the base font.

	$doc->getFontMetrics($properties $fontname)
	For INTERNAL use
 Returns a data structure representing the font metrics for the
 named font. The property list is the results of something like the
 following:

 $self->_buildNameTable($pagenum);
 my $properties = $self->{Names}->{$pagenum};

 Alternatively, if you know the page number, it might be easier
 to do:

 my $font = $self->dereference($fontlabel, $pagenum);
 my $fontmetrics = $font->{value}->{value};

 where the $fontlabel is something like
 '/Helv'. The getFontMetrics() method is useful in the cases where
 you've forgotten which page number you are working on (e.g. in
 CAM::PDF::GS), or if your property list isn't part of any page (e.g.
 working with form field annotation objects).

	$doc->addFont($pagenum, $fontname, $fontlabel)
	
	$doc->addFont($pagenum, $fontname, $fontlabel, $fontmetrics)
	Adds a reference to the specified font to the page.
 If a font metrics hash is supplied (it is required for a font
 other than the 14 core fonts), then it is cloned and inserted into the
 new font structure. Note that if those font metrics contain references
 (e.g. to the "FontDescriptor"), the
 referred objects are not copied -- you must do that part yourself.

 For Type1 fonts, the font metrics must minimally contain the
 following fields: "Subtype",
 "FirstChar",
 "LastChar",
 "Widths",
 "FontDescriptor".

	$doc->deEmbedFont($pagenum, $fontname)
	
	$doc->deEmbedFont($pagenum, $fontname, $basefont)
	Removes embedded font data, leaving font reference intact. Returns true if
 the font exists and 1) font is not embedded or 2) embedded data was
 successfully discarded. Returns false if the font does not exist, or the
 embedded data could not be discarded.
 The optional $basefont parameter
 allows you to change the font. This is useful when some applications
 embed a standard font (see below) and give it a funny name, like
 "SYLXNP+Helvetica". In this example,
 it's important to change the basename back to the standard
 "Helvetica" when de-embedding.

 De-embedding the font does NOT remove it from the PDF
 document, it just removes references to it. To get a size reduction by
 throwing away unused font data, you should use the following code
 sometime after this method.

 $self->cleanse();

 For reference, the standard fonts are
 "Times-Roman",
 "Helvetica", and
 "Courier" (and their bold, italic and
 bold-italic forms) plus "Symbol" and
 "Zapfdingbats". (Adobe PDF Reference
 v1.4, p.319)

	$doc->deEmbedFontByBaseName($pagenum, $fontname)
	
	$doc->deEmbedFontByBaseName($pagenum, $fontname, $basefont)
	Just like deEmbedFont(), except that the font name parameter refers
 to the name of the current base font instead of the PDF label for the
 font.
	$doc->wrapString($string, $width, $fontsize, $fontmetrics)
	
	$doc->wrapString($string, $width, $fontsize, $pagenum, $fontlabel)
	Returns an array of strings wrapped to the specified width.
	$doc->getStringWidth($fontmetrics, $string)
	For INTERNAL use
 Returns the width of the string, using the font metrics if
 possible.

	$doc->numPages()
	Returns the number of pages in the PDF document.
	$doc->getPage($pagenum)
	For INTERNAL use
 Returns a dictionary for a given numbered page.

	$doc->getPageObjnum($pagenum)
	For INTERNAL use
 Return the number of the PDF object in which the specified
 page occurs.

	$doc->getPageText($pagenum)
	Extracts the text from a PDF page as a string.
	$doc->getPageContentTree($pagenum)
	Retrieves a parsed page content data structure, or undef if there is a
 syntax error or if the page does not exist.
	$doc->getPageContent($pagenum)
	Return a string with the layout contents of one page.
	$doc->getPageDimensions($pagenum)
	Returns an array of "x",
 "y",
 "width" and
 "height" numbers that define the
 dimensions of the specified page in points (1/72 inches). Technically,
 this is the "MediaBox" dimensions, which
 explains why it's possible for "x" and
 "y" to be non-zero, but that's a rare
 case.
 For example, given a simple 8.5 by 11 inch page, this method
 will return "(0,0,612,792)".

 This method will die() if the specified page number
 does not exist.

	$doc->getName($object)
	For INTERNAL use
 Given a PDF object reference, return it's name, if it has one.
 This is useful for indirect references to images in particular.

	$doc->getPrefs()
	Return an array of security information for the document:

 owner password
 user password
 print boolean
 modify boolean
 copy boolean
 add boolean

 See the PDF reference for the intended use of the latter four
 booleans.

 This module publishes the array indices of these values for
 your convenience:

 $CAM::PDF::PREF_OPASS
 $CAM::PDF::PREF_UPASS
 $CAM::PDF::PREF_PRINT
 $CAM::PDF::PREF_MODIFY
 $CAM::PDF::PREF_COPY
 $CAM::PDF::PREF_ADD

 So, you can retrieve the value of the Copy boolean via:

 my ($canCopy) = ($self->getPrefs())[$CAM::PDF::PREF_COPY];

	$doc->canPrint()
	Return a boolean indicating whether the Print permission is enabled on the
 PDF.
	$doc->canModify()
	Return a boolean indicating whether the Modify permission is enabled on
 the PDF.
	$doc->canCopy()
	Return a boolean indicating whether the Copy permission is enabled on the
 PDF.
	$doc->canAdd()
	Return a boolean indicating whether the Add permission is enabled on the
 PDF.
	$doc->getFormFieldList()
	Return an array of the names of all of the PDF form fields. The names are
 the full hierarchical names constructed as explained in the PDF reference
 manual. These names are useful for the fillFormFields()
 function.
	$doc->getFormField($name)
	For INTERNAL use
 Return the object containing the form field definition for the
 specified field name. $name can be either the
 full name or the "short/alternate" name.

	$doc->getFormFieldDict($formfieldobject)
	For INTERNAL use
 Return a hash reference representing the accumulated property
 list for a form field, including all of it's inherited properties. This
 should be treated as a read-only hash! It ONLY retrieves the properties
 it knows about.

Data/Object Manipulation¶

	$doc->setPrefs($ownerpass, $userpass, $print?, $modify?, $copy?,
 $add?)
	Alter the document's security information. Note that modifying these
 parameters must be done respecting the intellectual property of the
 original document. See Adobe's statement in the introduction of the
 reference manual.
 Important Note: Most PDF readers (Acrobat, Preview.app)
 only offer one password field for opening documents. So, if the
 $ownerpass and $userpass
 are different, those applications cannot read the documents. (Perhaps
 this is a bug in CAM::PDF?)

 Note: any omitted booleans default to false. So, these two are
 equivalent:

 $doc->setPrefs('password', 'password');
 $doc->setPrefs('password', 'password', 0, 0, 0, 0);

	$doc->setName($object, $name)
	For INTERNAL use
 Change the name of a PDF object structure.

	$doc->removeName($object)
	For INTERNAL use
 Delete the name of a PDF object structure.

	$doc->pageAddName($pagenum, $name, $objectnum)
	For INTERNAL use
 Append a named object to the metadata for a given page.

	$doc->setPageContent($pagenum, $content)
	
	$doc->setPageContent($pagenum, $tree->toString)
	Replace the content of the specified page with a new version. This
 function is often used after the getPageContent() function and some
 manipulation of the returned string from that function.
 If your content is a parsed tree (i.e. the result of
 getPageContentTree) then you should serialize it via toString first.

	$doc->appendPageContent($pagenum, $content)
	Add more content to the specified page. Note that this function does NOT
 do any page metadata work for you (like creating font objects for any
 newly defined fonts).
	$doc->extractPages($pages...)
	Remove all pages from the PDF except the specified ones. Like
 deletePages(), the pages can be multiple arguments, comma separated
 lists, ranges (open or closed).
	$doc->deletePages($pages...)
	Remove the specified pages from the PDF. The pages can be multiple
 arguments, comma separated lists, ranges (open or closed).
	$doc->deletePage($pagenum)
	Remove the specified page from the PDF. If the PDF has only one page, this
 method will fail.
	$doc->decachePages($pagenum, $pagenum, ...)
	Clears cached copies of the specified page data structures. This is useful
 if an operation has been performed that changes a page.
	$doc->addPageResources($pagenum, $resourcehash)
	Add the resources from the given object to the page resource dictionary.
 If the page does not have a resource dictionary, create one. This function
 avoids duplicating resources where feasible.
	$doc->appendPDF($pdf)
	Append pages from another PDF document to this one. No optimization is
 done -- the pieces are just appended and the internal table of contents is
 updated.
 Note that this can break documents with annotations. See the
 appendpdf.pl script for a workaround.

	$doc->prependPDF($pdf)
	Just like appendPDF() except the new document is inserted on page 1
 instead of at the end.
	$doc->duplicatePage($pagenum)
	
	$doc->duplicatePage($pagenum, $leaveblank)
	Inserts an identical copy of the specified page into the document. The new
 page's number will be "$pagenum + 1".
 If $leaveblank is true, the new page
 does not get any content. Thus, the document is broken until you
 subsequently call setPageContent().

	$doc->createStreamObject($content)
	
	$doc->createStreamObject($content, $filter ...)
	For INTERNAL use
 Create a new Stream object. This object is NOT added to the
 document. Use the appendObject() function to do that after
 calling this function.

	$doc->uninlineImages()
	
	$doc->uninlineImages($pagenum)
	Search the content of the specified page (or all pages if the page number
 is omitted) for embedded images. If there are any, replace them with
 indirect objects. This procedure uses heuristics to detect in-line images,
 and is subject to confusion in extremely rare cases of text that uses
 "BI" and
 "ID" a lot.
	$doc->appendObject($doc, $objectnum, $recurse?)
	
	$doc->appendObject($undef, $object, $recurse?)
	Duplicate an object from another PDF document and add it to this document,
 optionally descending into the object and copying any other objects it
 references.
 Like replaceObject(), the second form allows you to
 append a newly-created block to the PDF.

	$doc->replaceObject($objectnum, $doc, $objectnum, $recurse?)
	
	$doc->replaceObject($objectnum, $undef, $object)
	Duplicate an object from another PDF document and insert it into this
 document, replacing an existing object. Optionally descend into the
 original object and copy any other objects it references.
 If the other document is undefined, then the object to copy is
 taken to be an anonymous object that is not part of any other document.
 This is useful when you've just created that anonymous object.

	$doc->deleteObject($objectnum)
	Remove an object from the document. This function does NOT take care of
 dependencies on this object.
	$doc->cleanse()
	Remove unused objects. WARNING: this function breaks some PDF
 documents because it removes objects that are strictly part of the page
 model hierarchy, but which are required anyway (like some font definition
 objects).
	$doc->createID()
	For INTERNAL use
 Generate a new document ID. Contrary the Adobe recommendation,
 this is a random number.

	$doc->fillFormFields($name => $value, ...)
	
	$doc->fillFormFields($opts_hash, $name => $value, ...)
	Set the default values of PDF form fields. The name should be the full
 hierarchical name of the field as output by the getFormFieldList()
 function. The argument list can be a hash if you like. A simple way to use
 this function is something like this:

 my %fields = (fname => 'John', lname => 'Smith', state => 'WI');
 $field{zip} = 53703;
 $self->fillFormFields(%fields);

 If the first argument is a hash reference, it is interpreted
 as options for how to render the filled data:

	background_color =< 'none' | $gray | [$r, $g, $b]
	Specify the background color for the text field.
	max_autoscale_fontsize =< $size
	
	min_autoscale_fontsize =< $size
	If the form field is set to auto-size the text to fit, then you may use
 these options to constrain the limits of that autoscaling. Otherwise, for
 example, a very long string will become arbitrarily small to fit in the
 box.

	$doc->clearFormFieldTriggers($name, $name, ...)
	Disable any triggers set on data entry for the specified form field names.
 This is useful in the case where, for example, the data entry Javascript
 forbids punctuation and you want to prefill with a hyphenated word. If you
 don't clear the trigger, the prefill may not happen.
	$doc->clearAnnotations()
	Remove all annotations from the document. If form fields are encountered,
 their text is added to the appropriate page.
	$doc->previousRevision()
	If this PDF was previously saved in append mode (that is, if
 "clean()" was not invoked on it), return
 a new instance representing that previous version. Otherwise return void.
 If this is an encrypted PDF, this method assumes that previous revisions
 were encrypted with the same password, which may be an incorrect
 assumption.
	$doc->allRevisions()
	Accumulate CAM::PDF instances returned by
 "previousRevision" until there are no
 more previous revisions. Returns a list of instances from newest to oldest
 including this instance as the newest.

Document Writing¶

	$doc->preserveOrder()
	Try to recreate the original document as much as possible. This may help
 in recreating documents which use undocumented tricks of saving font
 information in adjacent objects.
	$doc->isLinearized()
	Returns a boolean indicating whether this PDF is linearized (aka
 "optimized").
	$doc->delinearize()
	For INTERNAL use
 Undo the tweaks used to make the document 'optimized'. This
 function is automatically called on every save or output since this
 library does not yet support linearized documents.

	$doc->clean()
	Cache all parts of the document and throw away it's old structure. This is
 useful for writing PDFs anew, instead of simply appending changes to the
 existing documents. This is called by cleansave() and
 cleanoutput().
	$doc->needsSave()
	Returns a boolean indicating whether the save() method needs to be
 called. Like save(), this has nothing to do with whether the
 document has been saved to disk, but whether the in-memory representation
 of the document has been serialized.
	$doc->save()
	Serialize the document into a single string. All changed document elements
 are normalized, and a new index and an updated trailer are created.
 This function operates solely in memory. It DOES NOT write the
 document to a file. See the output() function for that.

	$doc->cleansave()
	Call the clean() function, then call the save()
 function.
	$doc->output($filename)
	
	$doc->output()
	Save the document to a file. The save() function is called first to
 serialize the data structure. If no filename is specified, or if the
 filename is '-', the document is written to standard output.
 Note: it is the responsibility of the application to ensure
 that the PDF document has either the Modify or Add permission. You can
 do this like the following:

 if ($self->canModify()) {
 $self->output($outfile);
 } else {
 die "The PDF file denies permission to make modifications\n";
 }

	$doc->cleanoutput($file)
	
	$doc->cleanoutput()
	Call the clean() function, then call the output() function
 to write a fresh copy of the document to a file.
	$doc->writeObject($objnum)
	Return the serialization of the specified object.
	$doc->writeString($string)
	Return the serialization of the specified string. Works on normal or hex
 strings. If encryption is desired, the string should be encrypted before
 being passed here.
	$doc->writeAny($node)
	Returns the serialization of the specified node. This handles all Node
 types, including object Nodes.

Document Traversing¶

	$doc->traverse($dereference, $node, $callbackfunc, $callbackdata)
	Recursive traversal of a PDF data structure.
 In many cases, it's useful to apply one action to every node
 in an object tree. The routines below all use this traverse()
 function. One of the most important parameters is the first: the
 $dereference boolean. If true, the traversal
 follows reference Nodes. If false, it does not descend into reference
 Nodes.

 Optionally, you can pass in a hashref as a final argument to
 reduce redundant traversing across multiple calls. Just pass in an empty
 hashref the first time and pass in the same hashref each time. See
 "changeRefKeys()" for an example.

	$doc->decodeObject($objectnum)
	For INTERNAL use
 Remove any filters (like compression, etc) from a data stream
 indicated by the object number.

	$doc->decodeAll($object)
	For INTERNAL use
 Remove any filters from any data stream in this object or any
 object referenced by it.

	$doc->decodeOne($object)
	
	$doc->decodeOne($object, $save?)
	For INTERNAL use
 Remove any filters from an object. The boolean flag
 $save (defaults to false) indicates whether this
 removal should be permanent or just this once. If true, the function
 returns success or failure. If false, the function returns the
 defiltered content.

	$doc->fixDecode($streamdata, $filter, $params)
	This is a utility method to do any tweaking after removing the filter from
 a data stream.
	$doc->encodeObject($objectnum, $filter)
	Apply the specified filter to the object.
	$doc->encodeOne($object, $filter)
	Apply the specified filter to the object.
	$doc->setObjNum($object, $objectnum, $gennum)
	Descend into an object and change all of the INTERNAL object number flags
 to a new number. This is just for consistency of internal accounting.
	$doc->getRefList($object)
	For INTERNAL use
 Return an array all of objects referred to in this object.

	$doc->changeRefKeys($object, $hashref)
	For INTERNAL use
 Renumber all references in an object.

	$doc->abbrevInlineImage($object)
	Contract all image keywords to inline abbreviations.
	$doc->unabbrevInlineImage($object)
	Expand all inline image abbreviations.
	$doc->changeString($object, $hashref)
	Alter all instances of a given string. The hashref is a dictionary of
 from-string and to-string. If the from-string looks like
 "regex(...)" then it is interpreted as a
 Perl regular expression and is eval'ed. Otherwise the search-and-replace
 is literal.

Utility functions¶

	$doc->rangeToArray($min, $max, $list...)
	Converts string lists of numbers to an array. For example,

 CAM::PDF->rangeToArray(1, 15, '1,3-5,12,9', '14-', '8 - 6, -2');

 becomes

 (1,3,4,5,12,9,14,15,8,7,6,1,2)

	$doc->trimstr($string)
	Used solely for debugging. Trims a string to a max of 40 characters,
 handling nulls and non-Unix line endings.
	$doc->copyObject($node)
	Clones a node via Data::Dumper and eval().
	$doc->cacheObjects()
	Parses all object Nodes and stores them in the cache. This is useful for
 cases where you intend to do some global manipulation and want all of the
 data conveniently in RAM.
	$doc->asciify($string)
	Helper class/instance method to massage a string, cleaning up some
 non-ASCII problems. This is a very incomplete list. Specifically:

	f-i ligatures
	
	(R) symbol
	

COMPATIBILITY¶

This library was primarily developed against the 3rd edition of the reference
 (PDF v1.4) with several important updates from 4th edition (PDF v1.5). This
 library focuses most deeply on PDF v1.2 features. Nonetheless, it should be
 forward and backward compatible in the majority of cases.

PERFORMANCE¶

This module is written with good speed and flexibility in mind, often at the
 expense of memory consumption. Entire PDF documents are typically slurped into
 RAM. As an example, simply calling
 "new('PDFReference15_v15.pdf')" (the 13.5 MB
 Adobe PDF Reference V1.5 document) pushes Perl to consume 89 MB of RAM on my
 development machine.

SEE ALSO¶

There are several other PDF modules on CPAN. Below is a brief description of a
 few of them. If these comments are out of date, please inform me.
	PDF::API2
	As of v0.46.003, LGPL license.
 This is the leading PDF library, in my opinion.

 Excellent text and font support. This is the highest level
 library of the bunch, and is the most complete implementation of the
 Adobe PDF spec. The author is amazingly responsive and patient.

	Text::PDF
	As of v0.25, Artistic license.
 Excellent compression support (CAM::PDF cribs off this
 Text::PDF feature). This has not been developed since 2003.

	PDF::Reuse
	As of v0.32, Artistic/GPL license, like Perl itself.
 This library is not object oriented, so it can only process
 one PDF at a time, while storing all data in global variables. I'm not
 fond of it, but it's quite popular, so don't take my word for it!

CAM::PDF is the only one of these that has regression tests.
 Currently, CAM::PDF has test coverage of about 50%, as reported by
 "Build testcover".

Additionally, PDFLib is a commercial package not on CPAN
 (www.pdflib.com). It is a C-based library with a Perl interface. It is
 designed for PDF creation, not for reuse.

INTERNALS¶

The data structure used to represent the PDF document is composed primarily of a
 hierarchy of Node objects. Every node in the document tree has this structure:

 type => <type>
 value => <value>
 objnum => <object number>
 gennum => <generation number>

where the <value> depends on the <type>, and
 <type> is one of

 Type Value
 ---- -----
 object Node
 stream byte string
 string byte string
 hexstring byte string
 number number
 reference integer (object number)
 boolean "true" | "false"
 label string
 array arrayref of Nodes
 dictionary hashref of (string => Node)
 null undef

All of these except "stream" are directly related to the
 PDF data types of the same name. Streams are treated as special cases in
 this library since the have a non-general syntax and placement in the
 document body. Internally, streams are very much like strings, except that
 they have filters applied to them.

All objects are referenced indirectly by their numbers, as defined
 in the PDF document. In all cases, the dereference() function should
 be used to deserialize objects into their internal representation. This
 function is also useful for looking up named objects in the page model
 metadata. Every node in the hierarchy contains its object and generation
 number. You can think of this as a sort of a pointer back to the root of
 each node tree. This serves in place of a "parent" link for every
 node, which would be harder to maintain.

The PDF document itself is represented internally as a hash
 reference with many components, including the document content, the document
 metadata (index, trailer and root node), the object cache, and several other
 caches, in addition to a few assorted bookkeeping structures.

The core of the document is represented in the object cache, which
 is only populated as needed, thus avoiding the overhead of parsing the whole
 document at read time.

AUTHOR¶

Chris Dolan
This module was originally developed by me at Clotho Advanced
 Media Inc. Now I maintain it in my spare time.

ACKNOWLEDGMENTS¶

Thanks to all the people who have submitted bug reports over the years! I've
 belatedly started crediting people in the CHANGES file. Apologies to
 contributors I've overlooked...

	2016-05-29	perl v5.22.2

	
Source file:
	
CAM::PDF.3pm.en.gz (from libcam-pdf-perl 1.60-3)

	
Source last updated:
	
2016-05-29T23:55:41Z

	
Converted to HTML:
	
2019-06-03T07:29:47Z

debiman HEAD, see github.com/Debian/debiman.
Found a problem? See the FAQ.

