.\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.28) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{ . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Ops 3pm" .TH Ops 3pm "2014-12-17" "perl v5.20.1" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" PDL::Ops \- Fundamental mathematical operators .SH "DESCRIPTION" .IX Header "DESCRIPTION" This module provides the functions used by \s-1PDL\s0 to overload the basic mathematical operators (\f(CW\*(C`+ \- / *\*(C'\fR etc.) and functions (\f(CW\*(C`sin sqrt\*(C'\fR etc.) .PP It also includes the function \f(CW\*(C`log10\*(C'\fR, which should be a perl function so that we can overload it! .PP Matrix multiplication (the operator \f(CW\*(C`x\*(C'\fR) is handled by the module PDL::Primitive. .SH "SYNOPSIS" .IX Header "SYNOPSIS" none .SH "FUNCTIONS" .IX Header "FUNCTIONS" .SS "plus" .IX Subsection "plus" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP add two piddles .PP .Vb 3 \& $c = plus $a, $b, 0; # explicit call with trailing 0 \& $c = $a + $b; # overloaded call \& $a\->inplace\->plus($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`+\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP plus processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "mult" .IX Subsection "mult" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP multiply two piddles .PP .Vb 3 \& $c = mult $a, $b, 0; # explicit call with trailing 0 \& $c = $a * $b; # overloaded call \& $a\->inplace\->mult($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`*\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP mult processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "minus" .IX Subsection "minus" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP subtract two piddles .PP .Vb 3 \& $c = minus $a, $b, 0; # explicit call with trailing 0 \& $c = $a \- $b; # overloaded call \& $a\->inplace\->minus($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`\-\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP minus processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "divide" .IX Subsection "divide" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP divide two piddles .PP .Vb 3 \& $c = divide $a, $b, 0; # explicit call with trailing 0 \& $c = $a / $b; # overloaded call \& $a\->inplace\->divide($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`/\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP divide processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "gt" .IX Subsection "gt" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP the binary > (greater than) operation .PP .Vb 3 \& $c = gt $a, $b, 0; # explicit call with trailing 0 \& $c = $a > $b; # overloaded call \& $a\->inplace\->gt($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`>\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP gt processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "lt" .IX Subsection "lt" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP the binary < (less than) operation .PP .Vb 3 \& $c = lt $a, $b, 0; # explicit call with trailing 0 \& $c = $a < $b; # overloaded call \& $a\->inplace\->lt($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`<\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP lt processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "le" .IX Subsection "le" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP the binary <= (less equal) operation .PP .Vb 3 \& $c = le $a, $b, 0; # explicit call with trailing 0 \& $c = $a <= $b; # overloaded call \& $a\->inplace\->le($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`<=\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP le processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "ge" .IX Subsection "ge" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP the binary >= (greater equal) operation .PP .Vb 3 \& $c = ge $a, $b, 0; # explicit call with trailing 0 \& $c = $a >= $b; # overloaded call \& $a\->inplace\->ge($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`>=\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP ge processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "eq" .IX Subsection "eq" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP binary \fIequal to\fR operation (\f(CW\*(C`==\*(C'\fR) .PP .Vb 3 \& $c = eq $a, $b, 0; # explicit call with trailing 0 \& $c = $a == $b; # overloaded call \& $a\->inplace\->eq($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`==\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP eq processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "ne" .IX Subsection "ne" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP binary \fInot equal to\fR operation (\f(CW\*(C`!=\*(C'\fR) .PP .Vb 3 \& $c = ne $a, $b, 0; # explicit call with trailing 0 \& $c = $a != $b; # overloaded call \& $a\->inplace\->ne($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`!=\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP ne processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "shiftleft" .IX Subsection "shiftleft" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP leftshift \f(CW$a\fR by \f(CW$b\fR .PP .Vb 3 \& $c = shiftleft $a, $b, 0; # explicit call with trailing 0 \& $c = $a << $b; # overloaded call \& $a\->inplace\->shiftleft($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`<<\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP shiftleft processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "shiftright" .IX Subsection "shiftright" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP rightshift \f(CW$a\fR by \f(CW$b\fR .PP .Vb 3 \& $c = shiftright $a, $b, 0; # explicit call with trailing 0 \& $c = $a >> $b; # overloaded call \& $a\->inplace\->shiftright($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`>>\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP shiftright processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "or2" .IX Subsection "or2" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP binary \fIor\fR of two piddles .PP .Vb 3 \& $c = or2 $a, $b, 0; # explicit call with trailing 0 \& $c = $a | $b; # overloaded call \& $a\->inplace\->or2($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`|\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP or2 processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "and2" .IX Subsection "and2" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP binary \fIand\fR of two piddles .PP .Vb 3 \& $c = and2 $a, $b, 0; # explicit call with trailing 0 \& $c = $a & $b; # overloaded call \& $a\->inplace\->and2($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`&\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP and2 processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "xor" .IX Subsection "xor" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP binary \fIexclusive or\fR of two piddles .PP .Vb 3 \& $c = xor $a, $b, 0; # explicit call with trailing 0 \& $c = $a ^ $b; # overloaded call \& $a\->inplace\->xor($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`^\*(C'\fR operator. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP xor processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "bitnot" .IX Subsection "bitnot" .Vb 1 \& Signature: (a(); [o]b()) .Ve .PP unary bit negation .PP .Vb 2 \& $b = ~ $a; \& $a\->inplace\->bitnot; # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the unary \f(CW\*(C`~\*(C'\fR operator/function. .PP bitnot processes bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. .SS "power" .IX Subsection "power" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP raise piddle \f(CW$a\fR to the power \f(CW$b\fR .PP .Vb 3 \& $c = $a\->power($b,0); # explicit function call \& $c = $a ** $b; # overloaded use \& $a\->inplace\->power($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`**\*(C'\fR function. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP power processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "atan2" .IX Subsection "atan2" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP elementwise \f(CW\*(C`atan2\*(C'\fR of two piddles .PP .Vb 3 \& $c = $a\->atan2($b,0); # explicit function call \& $c = atan2 $a, $b; # overloaded use \& $a\->inplace\->atan2($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`atan2\*(C'\fR function. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP atan2 processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "modulo" .IX Subsection "modulo" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP elementwise \f(CW\*(C`modulo\*(C'\fR operation .PP .Vb 3 \& $c = $a\->modulo($b,0); # explicit function call \& $c = $a % $b; # overloaded use \& $a\->inplace\->modulo($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`%\*(C'\fR function. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP modulo processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "spaceship" .IX Subsection "spaceship" .Vb 1 \& Signature: (a(); b(); [o]c(); int swap) .Ve .PP elementwise \*(L"<=>\*(R" operation .PP .Vb 3 \& $c = $a\->spaceship($b,0); # explicit function call \& $c = $a <=> $b; # overloaded use \& $a\->inplace\->spaceship($b,0); # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the binary \f(CW\*(C`<=>\*(C'\fR function. Note that when calling this function explicitly you need to supply a third argument that should generally be zero (see first example). This restriction is expected to go away in future releases. .PP spaceship processes bad values. The state of the bad-value flag of the output piddles is unknown. .SS "sqrt" .IX Subsection "sqrt" .Vb 1 \& Signature: (a(); [o]b()) .Ve .PP elementwise square root .PP .Vb 2 \& $b = sqrt $a; \& $a\->inplace\->sqrt; # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the unary \f(CW\*(C`sqrt\*(C'\fR operator/function. .PP sqrt processes bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. .SS "abs" .IX Subsection "abs" .Vb 1 \& Signature: (a(); [o]b()) .Ve .PP elementwise absolute value .PP .Vb 2 \& $b = abs $a; \& $a\->inplace\->abs; # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the unary \f(CW\*(C`abs\*(C'\fR operator/function. .PP abs processes bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. .SS "sin" .IX Subsection "sin" .Vb 1 \& Signature: (a(); [o]b()) .Ve .PP the sin function .PP .Vb 2 \& $b = sin $a; \& $a\->inplace\->sin; # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the unary \f(CW\*(C`sin\*(C'\fR operator/function. .PP sin processes bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. .SS "cos" .IX Subsection "cos" .Vb 1 \& Signature: (a(); [o]b()) .Ve .PP the cos function .PP .Vb 2 \& $b = cos $a; \& $a\->inplace\->cos; # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the unary \f(CW\*(C`cos\*(C'\fR operator/function. .PP cos processes bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. .SS "not" .IX Subsection "not" .Vb 1 \& Signature: (a(); [o]b()) .Ve .PP the elementwise \fInot\fR operation .PP .Vb 2 \& $b = ! $a; \& $a\->inplace\->not; # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the unary \f(CW\*(C`!\*(C'\fR operator/function. .PP not processes bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. .SS "exp" .IX Subsection "exp" .Vb 1 \& Signature: (a(); [o]b()) .Ve .PP the exponential function .PP .Vb 2 \& $b = exp $a; \& $a\->inplace\->exp; # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the unary \f(CW\*(C`exp\*(C'\fR operator/function. .PP exp processes bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. .SS "log" .IX Subsection "log" .Vb 1 \& Signature: (a(); [o]b()) .Ve .PP the natural logarithm .PP .Vb 2 \& $b = log $a; \& $a\->inplace\->log; # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the unary \f(CW\*(C`log\*(C'\fR operator/function. .PP log processes bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. .SS "log10" .IX Subsection "log10" .Vb 1 \& Signature: (a(); [o]b()) .Ve .PP the base 10 logarithm .PP .Vb 2 \& $b = log10 $a; \& $a\->inplace\->log10; # modify $a inplace .Ve .PP It can be made to work inplace with the \f(CW\*(C`$a\->inplace\*(C'\fR syntax. This function is used to overload the unary \f(CW\*(C`log10\*(C'\fR operator/function. .PP log10 processes bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. .SS "assgn" .IX Subsection "assgn" .Vb 1 \& Signature: (a(); [o]b()) .Ve .PP Plain numerical assignment. This is used to implement the \*(L".=\*(R" operator .PP assgn does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. .SH "AUTHOR" .IX Header "AUTHOR" Tuomas J. Lukka (lukka@fas.harvard.edu), Karl Glazebrook (kgb@aaoepp.aao.gov.au), Doug Hunt (dhunt@ucar.edu), Christian Soeller (c.soeller@auckland.ac.nz), Doug Burke (burke@ifa.hawaii.edu), and Craig DeForest (deforest@boulder.swri.edu).