.\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.28) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{ . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Math::Vector::Real::kdTree 3pm" .TH Math::Vector::Real::kdTree 3pm "2014-10-07" "perl v5.20.1" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" Math::Vector::Real::kdTree \- kd\-Tree implementation on top of Math::Vector::Real .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& use Math::Vector::Real::kdTree; \& \& use Math::Vector::Real; \& use Math::Vector::Real::Random; \& \& my @v = map Math::Vector::Real\->random_normal(4), 1..1000; \& \& my $tree = Math::Vector::Real::kdTree\->new(@v); \& \& my $ix = $tree\->find_nearest_vector(V(0, 0, 0, 0)); \& \& say "nearest vector is $ix, $v[$ix]"; .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" This module implements a kd-Tree data structure in Perl and common algorithms on top of it. .SS "Methods" .IX Subsection "Methods" The following methods are provided: .ie n .IP "$t = Math::Vector::Real::kdTree\->new(@points)" 4 .el .IP "\f(CW$t\fR = Math::Vector::Real::kdTree\->new(@points)" 4 .IX Item "$t = Math::Vector::Real::kdTree->new(@points)" Creates a new kd-Tree containing the given points. .ie n .IP "$t2 = $t\->clone" 4 .el .IP "\f(CW$t2\fR = \f(CW$t\fR\->clone" 4 .IX Item "$t2 = $t->clone" Creates a duplicate of the tree. The two trees will share internal read only data so this method is more efficient in terms of memory usage than others performing a deep copy. .ie n .IP "my $ix = $t\->insert($p0, $p1, ...)" 4 .el .IP "my \f(CW$ix\fR = \f(CW$t\fR\->insert($p0, \f(CW$p1\fR, ...)" 4 .IX Item "my $ix = $t->insert($p0, $p1, ...)" Inserts the given points into the kd-Tree. .Sp Returns the index assigned to the first point inserted. .ie n .IP "$s = $t\->size" 4 .el .IP "\f(CW$s\fR = \f(CW$t\fR\->size" 4 .IX Item "$s = $t->size" Returns the number of points inside the tree. .ie n .IP "$p = $t\->at($ix)" 4 .el .IP "\f(CW$p\fR = \f(CW$t\fR\->at($ix)" 4 .IX Item "$p = $t->at($ix)" Returns the point at the given index inside the tree. .ie n .IP "$t\->move($ix, $p)" 4 .el .IP "\f(CW$t\fR\->move($ix, \f(CW$p\fR)" 4 .IX Item "$t->move($ix, $p)" Moves the point at index \f(CW$ix\fR to the new given position readjusting the tree structure accordingly. .ie n .IP "($ix, $d) = $t\->find_nearest_vector($p, $max_d, @but_ix)" 4 .el .IP "($ix, \f(CW$d\fR) = \f(CW$t\fR\->find_nearest_vector($p, \f(CW$max_d\fR, \f(CW@but_ix\fR)" 4 .IX Item "($ix, $d) = $t->find_nearest_vector($p, $max_d, @but_ix)" .PD 0 .ie n .IP "($ix, $d) = $t\->find_nearest_vector($p, $max_d, \e%but_ix)" 4 .el .IP "($ix, \f(CW$d\fR) = \f(CW$t\fR\->find_nearest_vector($p, \f(CW$max_d\fR, \e%but_ix)" 4 .IX Item "($ix, $d) = $t->find_nearest_vector($p, $max_d, %but_ix)" .PD Find the nearest vector for the given point \f(CW$p\fR and returns its index and the distance between the two points (in scalar context the index is returned). .Sp If \f(CW$max_d\fR is defined, the search is limited to the points within that distance .Sp Optionally, a list of point indexes to be excluded from the search can be passed or, alternatively, a reference to a hash containing the indexes of the points to be excluded. .ie n .IP "@ix = $t\->find_nearest_vector_all_internal" 4 .el .IP "\f(CW@ix\fR = \f(CW$t\fR\->find_nearest_vector_all_internal" 4 .IX Item "@ix = $t->find_nearest_vector_all_internal" Returns the index of the nearest vector from the tree. .Sp It is equivalent to the following code (though, it uses a better algorithm): .Sp .Vb 3 \& @ix = map { \& scalar $t\->nearest_vector($t\->at($_), undef, $_) \& } 0..($t\->size \- 1); .Ve .ie n .IP "$ix = $t\->find_farthest_vector($p, $min_d, @but_ix)" 4 .el .IP "\f(CW$ix\fR = \f(CW$t\fR\->find_farthest_vector($p, \f(CW$min_d\fR, \f(CW@but_ix\fR)" 4 .IX Item "$ix = $t->find_farthest_vector($p, $min_d, @but_ix)" Find the point from the tree farthest from the given \f(CW$p\fR. .Sp The optional argument \f(CW$min_d\fR specifies a minimal distance. Undef is returned when not point farthest that it is found. .Sp \&\f(CW@but_ix\fR specifies points that should not be considered when looking for the farthest point. .ie n .IP "$ix = $t\->find_farthest_vector_internal($ix, $min_d, @but_ix)" 4 .el .IP "\f(CW$ix\fR = \f(CW$t\fR\->find_farthest_vector_internal($ix, \f(CW$min_d\fR, \f(CW@but_ix\fR)" 4 .IX Item "$ix = $t->find_farthest_vector_internal($ix, $min_d, @but_ix)" Given the index of a point on the tree this method returns the index of the farthest vector also from the tree. .ie n .IP "@k = $t\->k_means_start($n)" 4 .el .IP "\f(CW@k\fR = \f(CW$t\fR\->k_means_start($n)" 4 .IX Item "@k = $t->k_means_start($n)" This method uses the internal tree structure to generate a set of point that can be used as seeds for other \f(CW\*(C`k_means\*(C'\fR methods. .Sp There isn't any guarantee on the quality of the generated seeds, but the used algorithm seems to perform well in practice. .ie n .IP "@k = $t\->k_means_step(@k)" 4 .el .IP "\f(CW@k\fR = \f(CW$t\fR\->k_means_step(@k)" 4 .IX Item "@k = $t->k_means_step(@k)" Performs a step of the Lloyd's algorithm for k\-means calculation. .ie n .IP "@k = $t\->k_means_loop(@k)" 4 .el .IP "\f(CW@k\fR = \f(CW$t\fR\->k_means_loop(@k)" 4 .IX Item "@k = $t->k_means_loop(@k)" Iterates until the Lloyd's algorithm converges and returns the final means. .ie n .IP "@ix = $t\->k_means_assign(@k)" 4 .el .IP "\f(CW@ix\fR = \f(CW$t\fR\->k_means_assign(@k)" 4 .IX Item "@ix = $t->k_means_assign(@k)" Returns for every point in the three the index of the cluster it belongs to. .ie n .IP "@ix = $t\->find_in_ball($z, $d, $but)" 4 .el .IP "\f(CW@ix\fR = \f(CW$t\fR\->find_in_ball($z, \f(CW$d\fR, \f(CW$but\fR)" 4 .IX Item "@ix = $t->find_in_ball($z, $d, $but)" .PD 0 .ie n .IP "$n = $t\->find_in_ball($z, $d, $but)" 4 .el .IP "\f(CW$n\fR = \f(CW$t\fR\->find_in_ball($z, \f(CW$d\fR, \f(CW$but\fR)" 4 .IX Item "$n = $t->find_in_ball($z, $d, $but)" .PD Finds the points inside the tree contained in the hypersphere with center \f(CW$z\fR and radius \f(CW$d\fR. .Sp In scalar context returns the number of points found. In list context returns the indexes of the points. .Sp If the extra argument \f(CW$but\fR is provided. The point with that index is ignored. .ie n .IP "@ix = $t\->ordered_by_proximity" 4 .el .IP "\f(CW@ix\fR = \f(CW$t\fR\->ordered_by_proximity" 4 .IX Item "@ix = $t->ordered_by_proximity" Returns the indexes of the points in an ordered where is likely that the indexes of near vectors are also in near positions in the list. .SS "k\-means" .IX Subsection "k-means" The module can be used to calculate the k\-means of a set of vectors as follows: .PP .Vb 2 \& # inputs \& my @v = ...; my $k = ...; \& \& # k\-mean calculation \& my $t = Math::Vector::Real::kdTree\->new(@v); \& my @means = $t\->k_means_start($k); \& @means = $t\->k_means_loop(@means); \& @assign = $t\->k_means_assign(@means); \& my @cluster = map [], 1..$k; \& for (0..$#assign) { \& my $cluster_ix = $assign[$_]; \& my $cluster = $cluster[$cluster_ix]; \& push @$cluster, $t\->at($_); \& } \& \& use Data::Dumper; \& print Dumper \e@cluster; .Ve .SH "SEE ALSO" .IX Header "SEE ALSO" Wikipedia k\-d Tree entry . .PP K\-means filtering algorithm . .PP Math::Vector::Real .SH "COPYRIGHT AND LICENSE" .IX Header "COPYRIGHT AND LICENSE" Copyright (C) 2011\-2014 by Salvador Fandin\*~o .PP This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself, either Perl version 5.12.3 or, at your option, any later version of Perl 5 you may have available.