.\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.28) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{ . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Math::PlanePath::SierpinskiArrowhead 3pm" .TH Math::PlanePath::SierpinskiArrowhead 3pm "2014-08-30" "perl v5.20.1" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" Math::PlanePath::SierpinskiArrowhead \-\- self\-similar triangular path traversal .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 3 \& use Math::PlanePath::SierpinskiArrowhead; \& my $path = Math::PlanePath::SierpinskiArrowhead\->new; \& my ($x, $y) = $path\->n_to_xy (123); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" This is an integer version of the Sierpinski arrowhead path. It follows a self-similar triangular shape leaving middle triangle gaps. .IX Xref "Sierpinski, Waclaw" .PP .Vb 10 \& \e \& 27\-\-\-\-26 19\-\-\-\-18 15\-\-\-\-14 8 \& \e / \e / \e \& 25 20 17\-\-\-\-16 13 7 \& / \e / \& 24 21 11\-\-\-\-12 6 \& \e / / \& 23\-\-\-\-22 10 5 \& \e \& 5\-\-\-\- 6 9 4 \& / \e / \& 4 7\-\-\-\- 8 3 \& \e \& 3\-\-\-\- 2 2 \& \e \& 1 1 \& / \& 0 <\- Y=0 \& \& \-8 \-7 \-6 \-5 \-4 \-3 \-2 \-1 X=0 1 2 3 4 5 6 7 8 .Ve .PP The base figure is the N=0 to N=3 shape. It's repeated up in mirror image as N=3 to N=6 then across as N=6 to N=9. At the next level the same is done with the N=0 to N=9 shape, up as N=9 to N=18 and across as N=18 to N=27, etc. .PP The X,Y coordinates are on a triangular lattice done in integers by using every second X, per \*(L"Triangular Lattice\*(R" in Math::PlanePath. .PP The base pattern is a triangle like .PP .Vb 11 \& 3\-\-\-\-\-\-\-\-\-2 \- \- \- \- . \& \e \e \& C / \e B / \& \e D \e \& / \e / \& . \- \- \- \- 1 \& \e / \& A / \& \e / \& / \& 0 .Ve .PP Higher levels go into the triangles A,B,C but the middle triangle D is not traversed. It's hard to see that omitted middle in the initial N=0 to N=27 above. The following is more of the visited points, making it clearer .PP .Vb 10 \& * * * * * * * * * * * * \& * * * * * * * * * * * \& * * * * * * * * \& * * * * * \& * * * * * * * \& * * * * * \& * * * * \& * * * \& * * * * * * * * * * * \& * * * * * * * * * * * \& * * * * * * * * \& * * * * * \& * * * * * * * \& * * * * * \& * * * * \& * * * \& * * * * * * \& * * * * * \& * * * * \& * * * \& * * * \& * * * \& * * \& * \& * .Ve .SS "Sierpinski Triangle" .IX Subsection "Sierpinski Triangle" The path is related to the Sierpinski triangle or \*(L"gasket\*(R" by treating each line segment as the side of a little triangle. The N=0 to N=1 segment has a triangle on the left, N=1 to N=2 on the right, and N=2 to N=3 underneath, which are per the A,B,C parts shown above. Notice there's no middle little triangle \*(L"D\*(R" in the triplets of line segments. In general a segment N to N+1 has its little triangle to the left if N even or to the right if N odd. .PP This pattern of little triangles is why the N=4 to N=5 looks like it hasn't visited the vertex of the triangular N=0 to N=9 \*(-- the 4 to 5 segment is standing in for a little triangle to the left of that segment. Similarly N=13 to N=14 and each alternate side midway through replication levels. .PP There's easier ways to generate the Sierpinski triangle though. One of the simplest is to take X,Y coordinates which have no 1 bit on common, ie. a bitwise-AND, .PP .Vb 1 \& ($x & $y) == 0 .Ve .PP which gives the shape in the first quadrant X>=0,Y>=0. The same can be had with the \f(CW\*(C`ZOrderCurve\*(C'\fR path by plotting all numbers N which have no digit 3 in their base\-4 representation (see \&\*(L"Power of 2 Values\*(R" in Math::PlanePath::ZOrderCurve), since digit 3s in that case are X,Y points with a 1 bit in common. .PP The attraction of this Arrowhead path is that it makes a connected traversal through the Sierpinski triangle pattern. .SS "Level Sizes" .IX Subsection "Level Sizes" Counting the N=0,1,2,3 part as level 1, each level goes from .PP .Vb 2 \& Nstart = 0 \& Nlevel = 3^level .Ve .PP inclusive of the final triangle corner position. For example level 2 is from N=0 to N=3^2=9. Each level doubles in size, .PP .Vb 2 \& 0 <= Y <= 2^level \& \- 2^level <= X <= 2^level .Ve .PP The final Nlevel position is alternately on the right or left, .PP .Vb 2 \& Xlevel = / 2^level if level even \& \e \- 2^level if level odd .Ve .PP The Y axis is crossed, ie. X=0, at N=2,6,18,etc which is is 2/3 through the level, ie. after two replications of the previous level, .PP .Vb 2 \& Ncross = 2/3 * 3^level \& = 2 * 3^(level\-1) .Ve .SS "Align Parameter" .IX Subsection "Align Parameter" An optional \f(CW\*(C`align\*(C'\fR parameter controls how the points are arranged relative to the Y axis. The default shown above is \*(L"triangular\*(R". The choices are the same as for the \f(CW\*(C`SierpinskiTriangle\*(C'\fR path. .PP \&\*(L"right\*(R" means points to the right of the axis, packed next to each other and so using an eighth of the plane. .PP .Vb 1 \& align => "right" \& \& | | \& 8 | 27\-26 19\-18 15\-14 \& | | / | / | \& 7 | 25 20 17\-16 13 \& | / | / \& 6 | 24 21 11\-12 \& | | / / \& 5 | 23\-22 10 \& | | \& 4 | 5\-\-6 9 \& | / | / \& 3 | 4 7\-\-8 \& | | \& 2 | 3\-\-2 \& | | \& 1 | 1 \& | / \& Y=0 | 0 \& +\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \& X=0 1 2 3 4 5 6 7 .Ve .PP \&\*(L"left\*(R" is similar but skewed to the left of the Y axis, ie. into negative X. .PP .Vb 1 \& align => "left" \& \& \e \& 27\-26 19\-18 15\-14 | 8 \& \e | \e | \e | \& 25 20 17\-16 13 | 7 \& | \e | | \& 24 21 11\-12 | 6 \& \e | | | \& 23\-22 10 | 5 \& \e | \& 5\-\-6 9 | 4 \& | \e | | \& 4 7\-\-8 | 3 \& \e | \& 3\-\-2 | 2 \& \e | \& 1 | 1 \& | | \& 0 | Y=0 \& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-+ \& \& \-8 \-7 \-6 \-5 \-4 \-3 \-2 \-1 X=0 .Ve .PP \&\*(L"diagonal\*(R" put rows on diagonals down from the Y axis to the X axis. This uses the whole of the first quadrant (with gaps). .PP .Vb 1 \& align => "diagonal" \& \& | | \& 8 | 27 \& | \e \& 7 | 26 \& | | \& 6 | 24\-25 \& | | \& 5 | 23 20\-19 \& | \e | \e \& 4 | 22\-21 18 \& | | \& 3 | 4\-\-5 17 \& | | \e \e \& 2 | 3 6 16\-15 \& | \e | \e \& 1 | 2 7 10\-11 14 \& | | \e | \e | \& Y=0 | 0\-\-1 8\-\-9 12\-13 \& +\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \& X=0 1 2 3 4 5 6 7 .Ve .SS "Sideways" .IX Subsection "Sideways" The arrowhead is sometimes drawn on its side, with a base along the X axis. That can be had with a \-60 degree rotation (see \*(L"Triangular Lattice\*(R" in Math::PlanePath), .PP .Vb 1 \& (3Y+X)/2, (Y\-X)/2 rotate \-60 .Ve .PP The first point N=1 is then along the X axis at X=2,Y=0. Or to have it diagonally upwards first then apply a mirroring \-X before rotating .PP .Vb 1 \& (3Y\-X)/2, (Y+X)/2 mirror X and rotate \-60 .Ve .PP The plain \-60 rotate puts the Nlevel=3^level point on the X axis for even number level, and at the top peak for odd level. With the extra mirroring it's the other way around. If drawing successive levels then the two ways could be alternated to have the endpoint on the X axis each time. .SH "FUNCTIONS" .IX Header "FUNCTIONS" See \*(L"\s-1FUNCTIONS\*(R"\s0 in Math::PlanePath for behaviour common to all path classes. .ie n .IP """$path = Math::PlanePath::SierpinskiArrowhead\->new ()""" 4 .el .IP "\f(CW$path = Math::PlanePath::SierpinskiArrowhead\->new ()\fR" 4 .IX Item "$path = Math::PlanePath::SierpinskiArrowhead->new ()" .PD 0 .ie n .IP """$path = Math::PlanePath::SierpinskiArrowhead\->new (align => $str)""" 4 .el .IP "\f(CW$path = Math::PlanePath::SierpinskiArrowhead\->new (align => $str)\fR" 4 .IX Item "$path = Math::PlanePath::SierpinskiArrowhead->new (align => $str)" .PD Create and return a new arrowhead path object. \f(CW\*(C`align\*(C'\fR is a string, one of the following as described above. .Sp .Vb 4 \& "triangular" the default \& "right" \& "left" \& "diagonal" .Ve .ie n .IP """($x,$y) = $path\->n_to_xy ($n)""" 4 .el .IP "\f(CW($x,$y) = $path\->n_to_xy ($n)\fR" 4 .IX Item "($x,$y) = $path->n_to_xy ($n)" Return the X,Y coordinates of point number \f(CW$n\fR on the path. Points begin at 0 and if \f(CW\*(C`$n < 0\*(C'\fR then the return is an empty list. .Sp If \f(CW$n\fR is not an integer then the return is on a straight line between the integer points. .SS "Level Methods" .IX Subsection "Level Methods" .ie n .IP """($n_lo, $n_hi) = $path\->level_to_n_range($level)""" 4 .el .IP "\f(CW($n_lo, $n_hi) = $path\->level_to_n_range($level)\fR" 4 .IX Item "($n_lo, $n_hi) = $path->level_to_n_range($level)" Return \f(CW\*(C`(0, 3**$level)\*(C'\fR. .SH "OEIS" .IX Header "OEIS" Entries in Sloane's Online Encyclopedia of Integer Sequences related to this path include, .Sp .RS 4 (etc) .RE .PP .Vb 4 \& A189706 turn 0=left,1=right at odd positions N=1,3,5,etc \& A189707 (N+1)/2 of the odd N positions of left turns \& A189708 (N+1)/2 of the odd N positions of right turns \& A156595 turn 0=left,1=right at even positions N=2,4,6,etc .Ve .SH "SEE ALSO" .IX Header "SEE ALSO" Math::PlanePath, Math::PlanePath::SierpinskiArrowheadCentres, Math::PlanePath::SierpinskiTriangle, Math::PlanePath::KochCurve .SH "HOME PAGE" .IX Header "HOME PAGE" .SH "LICENSE" .IX Header "LICENSE" Copyright 2011, 2012, 2013, 2014 Kevin Ryde .PP Math-PlanePath is free software; you can redistribute it and/or modify it under the terms of the \s-1GNU\s0 General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. .PP Math-PlanePath is distributed in the hope that it will be useful, but \&\s-1WITHOUT ANY WARRANTY\s0; without even the implied warranty of \s-1MERCHANTABILITY\s0 or \s-1FITNESS FOR A PARTICULAR PURPOSE. \s0 See the \s-1GNU\s0 General Public License for more details. .PP You should have received a copy of the \s-1GNU\s0 General Public License along with Math-PlanePath. If not, see .