.\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.28) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{ . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Math::PlanePath::QuintetCurve 3pm" .TH Math::PlanePath::QuintetCurve 3pm "2014-08-26" "perl v5.20.1" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" Math::PlanePath::QuintetCurve \-\- self\-similar "plus" shaped curve .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 3 \& use Math::PlanePath::QuintetCurve; \& my $path = Math::PlanePath::QuintetCurve\->new; \& my ($x, $y) = $path\->n_to_xy (123); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" This path is traces out a spiralling self-similar \*(L"+\*(R" shape, .PP .Vb 10 \& 125\-\-... 93\-\-92 11 \& | | | \& 123\-124 94 91\-\-90\-\-89\-\-88 10 \& | | | \& 122\-121\-120 103\-102 95 82\-\-83 86\-\-87 9 \& | | | | | | | \& 115\-116 119 104 101\-100\-\-99 96 81 84\-\-85 8 \& | | | | | | | \& 113\-114 117\-118 105 32\-\-33 98\-\-97 80\-\-79\-\-78 7 \& | | | | | \& 112\-111\-110\-109 106 31 34\-\-35\-\-36\-\-37 76\-\-77 6 \& | | | | | \& 108\-107 30 43\-\-42 39\-\-38 75 5 \& | | | | | \& 25\-\-26 29 44 41\-\-40 73\-\-74 4 \& | | | | | \& 23\-\-24 27\-\-28 45\-\-46\-\-47 72\-\-71\-\-70\-\-69\-\-68 3 \& | | | \& 22\-\-21\-\-20\-\-19\-\-18 49\-\-48 55\-\-56\-\-57 66\-\-67 2 \& | | | | | \& 5\-\-\-6\-\-\-7 16\-\-17 50\-\-51 54 59\-\-58 65 1 \& | | | | | | | \& 0\-\-\-1 4 9\-\-\-8 15 52\-\-53 60\-\-61 64 <\- Y=0 \& | | | | | | \& 2\-\-\-3 10\-\-11 14 62\-\-63 \-1 \& | | \& 12\-\-13 \-2 \& \& ^ \& X=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... .Ve .PP The base figure is the initial N=0 to N=4. .PP .Vb 7 \& 5 \& | \& | \& 0\-\-\-1 4 base figure \& | | \& | | \& 2\-\-\-3 .Ve .PP It corresponds to a traversal of the following \*(L"+\*(R" shape, .PP .Vb 10 \& .... 5 \& . | \& . <| \& | \& 0\-\-\-\-1 .. 4 .... \& v | | . \& . |> |> . \& . | | . \& .... 2\-\-\-\-3 .... \& . v . \& . . \& . . \& . .. . .Ve .PP The \*(L"v\*(R" and \*(L">\*(R" notches are the side the figure is directed at the higher replications. The 0, 2 and 3 parts are the right hand side of the line and are a plain repetition of the base figure. The 1 and 4 parts are to the left and are a reversal. The first such reversal is seen above as N=5 to N=10. ..... . . .PP .Vb 7 \& 5\-\-\-6\-\-\-7 ... \& . . | . \& . | . reversed figure \& ... 9\-\-\-8 ... \& | . \& | . \& 10 ... .Ve .PP In the base figure it can be seen the N=5 endpoint is rotated up around from the N=0 to N=1 direction. This makes successive higher levels slowly spiral around. .PP .Vb 4 \& N = 5^level \& angle = level * atan(1/2) \& = level * 26.56 degrees \& radius = sqrt(5) ^ level .Ve .PP In the sample shown above N=125 is level=3 and has spiralled around to angle 3*26.56=79.7 degrees. The next level goes into the second quadrant with X negative. A full circle around the plane is around level 14. .SS "Arms" .IX Subsection "Arms" The optional \f(CW\*(C`arms => $a\*(C'\fR parameter can give 1 to 4 copies of the curve, each advancing successively. For example \f(CW\*(C`arms=>4\*(C'\fR is as follows. N=4*k points are the plain curve, and N=4*k+1, N=4*k+2 and N=4*k+3 are rotated copies of it. .PP .Vb 10 \& 69\-\-65 ... \& | | | \& ..\-117\-113\-109 73 61\-\-57\-\-53\-\-49 120 \& | | | | \& 101\-105 77 25\-\-29 41\-\-45 100\-104 116 \& | | | | | | | | \& 97\-\-93 81 21 33\-\-37 92\-\-96 108\-112 \& | | | | \& 50\-\-46 89\-\-85 17\-\-13\-\- 9 88\-\-84\-\-80\-\-76\-\-72 \& | | | | \& 54 42\-\-38 10\-\- 6 1\-\- 5 20\-\-24\-\-28 64\-\-68 \& | | | | | | | \& 58 30\-\-34 14 2 0\-\- 4 16 36\-\-32 60 \& | | | | | | | \& 66\-\-62 26\-\-22\-\-18 7\-\- 3 8\-\-12 40\-\-44 56 \& | | | | \& 70\-\-74\-\-78\-\-82\-\-86 11\-\-15\-\-19 87\-\-91 48\-\-52 \& | | | | \& 110\-106 94\-\-90 39\-\-35 23 83 95\-\-99 \& | | | | | | | | \& 114 102\-\-98 47\-\-43 31\-\-27 79 107\-103 \& | | | | \& 118 51\-\-55\-\-59\-\-63 75 111\-115\-119\-.. \& | | | \& ... 67\-\-71 .Ve .PP The curve is essentially an ever expanding \*(L"+\*(R" shape with one corner at the origin. Four such shapes can be packed as follows, .PP .Vb 10 \& +\-\-\-+ \& | | \& +\-\-\-+\-\-\- +\-\-\-+ \& | | A | \& +\-\-\-+ +\-\-\-+ +\-\-\-+ \& | B | | | \& +\-\-\-+ +\-\-\-O\-\-\-+ +\-\-\-+ \& | | | D | \& +\-\-\-+ +\-\-\-+ +\-\-\-+ \& | C | | \& +\-\-\-+ +\-\-\-+\-\-\-+ \& | | \& +\-\-\-+ .Ve .PP At higher replication levels the sides are wiggly and spiralling and the centres of each rotated around, but they sides are symmetric and mesh together perfectly to fill the plane. .SH "FUNCTIONS" .IX Header "FUNCTIONS" See \*(L"\s-1FUNCTIONS\*(R"\s0 in Math::PlanePath for behaviour common to all path classes. .ie n .IP """$path = Math::PlanePath::QuintetCurve\->new ()""" 4 .el .IP "\f(CW$path = Math::PlanePath::QuintetCurve\->new ()\fR" 4 .IX Item "$path = Math::PlanePath::QuintetCurve->new ()" .PD 0 .ie n .IP """$path = Math::PlanePath::QuintetCurve\->new (arms => $a)""" 4 .el .IP "\f(CW$path = Math::PlanePath::QuintetCurve\->new (arms => $a)\fR" 4 .IX Item "$path = Math::PlanePath::QuintetCurve->new (arms => $a)" .PD Create and return a new path object. .ie n .IP """($x,$y) = $path\->n_to_xy ($n)""" 4 .el .IP "\f(CW($x,$y) = $path\->n_to_xy ($n)\fR" 4 .IX Item "($x,$y) = $path->n_to_xy ($n)" Return the X,Y coordinates of point number \f(CW$n\fR on the path. Points begin at 0 and if \f(CW\*(C`$n < 0\*(C'\fR then the return is an empty list. .Sp Fractional positions give an X,Y position along a straight line between the integer positions. .ie n .IP """$n = $path\->n_start()""" 4 .el .IP "\f(CW$n = $path\->n_start()\fR" 4 .IX Item "$n = $path->n_start()" Return 0, the first N in the path. .ie n .IP """($n_lo, $n_hi) = $path\->rect_to_n_range ($x1,$y1, $x2,$y2)""" 4 .el .IP "\f(CW($n_lo, $n_hi) = $path\->rect_to_n_range ($x1,$y1, $x2,$y2)\fR" 4 .IX Item "($n_lo, $n_hi) = $path->rect_to_n_range ($x1,$y1, $x2,$y2)" In the current code the returned range is exact, meaning \f(CW$n_lo\fR and \&\f(CW$n_hi\fR are the smallest and biggest in the rectangle, but don't rely on that yet since finding the exact range is a touch on the slow side. (The advantage of which though is that it helps avoid very big ranges from a simple over-estimate.) .SS "Level Methods" .IX Subsection "Level Methods" .ie n .IP """($n_lo, $n_hi) = $path\->level_to_n_range($level)""" 4 .el .IP "\f(CW($n_lo, $n_hi) = $path\->level_to_n_range($level)\fR" 4 .IX Item "($n_lo, $n_hi) = $path->level_to_n_range($level)" Return \f(CW\*(C`(0, 5**$level)\*(C'\fR, or for multiple arms return \f(CW\*(C`(0, $arms * 5**$level)\*(C'\fR. .Sp There are 5^level + 1 points in a level, numbered starting from 0. On the second and subsequent arms the origin is omitted (so as not to repeat that point) and so just 5^level for them, giving 5^level+1 + (arms\-1)*5^level = arms*5^level + 1 many points starting from 0. .SH "FORMULAS" .IX Header "FORMULAS" .SS "X,Y to N" .IX Subsection "X,Y to N" The current approach uses the \f(CW\*(C`QuintetCentres\*(C'\fR \f(CW\*(C`xy_to_n()\*(C'\fR. Because the tiling in \f(CW\*(C`QuintetCurve\*(C'\fR and \f(CW\*(C`QuintetCentres\*(C'\fR is the same, the X,Y coordinates for a given N are no more than 1 away in the grid. .PP The way the two lowest shapes are arranged in fact means that for a \&\f(CW\*(C`QuintetCurve\*(C'\fR N at X,Y then the same N on the \f(CW\*(C`QuintetCentres\*(C'\fR is at one of three locations .PP .Vb 4 \& X, Y same \& X, Y+1 up \& X\-1, Y+1 up and left \& X\-1, Y left .Ve .PP This is so even when the \*(L"arms\*(R" multiple paths are in use (the same arms in both coordinates). .PP Is there an easy way to know which of the four offsets is right? The current approach is to give each to \f(CW\*(C`QuintetCentres\*(C'\fR to make an N, put that N back through \f(CW\*(C`n_to_xy()\*(C'\fR to see if it's the target \f(CW$n\fR. .SH "SEE ALSO" .IX Header "SEE ALSO" Math::PlanePath, Math::PlanePath::QuintetCentres, Math::PlanePath::QuintetReplicate, Math::PlanePath::Flowsnake .SH "HOME PAGE" .IX Header "HOME PAGE" .SH "LICENSE" .IX Header "LICENSE" Copyright 2011, 2012, 2013, 2014 Kevin Ryde .PP This file is part of Math-PlanePath. .PP Math-PlanePath is free software; you can redistribute it and/or modify it under the terms of the \s-1GNU\s0 General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. .PP Math-PlanePath is distributed in the hope that it will be useful, but \&\s-1WITHOUT ANY WARRANTY\s0; without even the implied warranty of \s-1MERCHANTABILITY\s0 or \s-1FITNESS FOR A PARTICULAR PURPOSE. \s0 See the \s-1GNU\s0 General Public License for more details. .PP You should have received a copy of the \s-1GNU\s0 General Public License along with Math-PlanePath. If not, see .