.\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.28) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{ . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Math::PlanePath::Corner 3pm" .TH Math::PlanePath::Corner 3pm "2014-06-14" "perl v5.20.1" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" Math::PlanePath::Corner \-\- points shaped around in a corner .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 3 \& use Math::PlanePath::Corner; \& my $path = Math::PlanePath::Corner\->new; \& my ($x, $y) = $path\->n_to_xy (123); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" This path puts points in layers working outwards from the corner of the first quadrant. .PP .Vb 10 \& 5 | 26\-\-... \& | \& 4 | 17\-\-18\-\-19\-\-20\-\-21 \& | | \& 3 | 10\-\-11\-\-12\-\-13 22 \& | | | \& 2 | 5\-\- 6\-\- 7 14 23 \& | | | | \& 1 | 2\-\- 3 8 15 24 \& | | | | | | \& Y=0 | 1 4 9 16 25 \& +\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \& X=0 1 2 3 4 .Ve .PP The horizontal 1,4,9,16,etc along Y=0 is the perfect squares. This is since each further row/column \*(L"gnomon\*(R" added to a square makes a one-bigger square, .IX Xref "Gnomon Square numbers" .PP .Vb 4 \& 10 11 12 13 \& 5 6 7 5 6 7 14 \& 2 3 2 3 8 2 3 8 15 \& 1 4 1 4 9 1 4 9 16 \& \& 2x2 3x3 4x4 .Ve .PP N=2,6,12,20,etc on the diagonal X=Y\-1 up from X=0,Y=1 is the pronic numbers k*(k+1) which are half way between the squares. .IX Xref "Pronic numbers" .PP Each gnomon is 2 longer than the previous. This is similar to the \&\f(CW\*(C`PyramidRows\*(C'\fR, \f(CW\*(C`PyramidSides\*(C'\fR and \f(CW\*(C`SacksSpiral\*(C'\fR paths. The \f(CW\*(C`Corner\*(C'\fR and the \f(CW\*(C`PyramidSides\*(C'\fR are the same but \f(CW\*(C`PyramidSides\*(C'\fR is stretched to two quadrants instead of one for the \f(CW\*(C`Corner\*(C'\fR here. .SS "Wider" .IX Subsection "Wider" An optional \f(CW\*(C`wider => $integer\*(C'\fR makes the path wider horizontally, becoming a rectangle. For example .PP .Vb 1 \& $path = Math::PlanePath::Corner\->new (wider => 3); .Ve .PP gives .PP .Vb 10 \& 4 | 29\-\-30\-\-31\-\-... \& | \& 3 | 19\-\-20\-\-21\-\-22\-\-23\-\-24\-\-25 \& | | \& 2 | 11\-\-12\-\-13\-\-14\-\-15\-\-16 26 \& | | | \& 1 | 5\-\-\-6\-\-\-7\-\-\-8\-\-\-9 17 27 \& | | | | \& Y=0 | 1\-\-\-2\-\-\-3\-\-\-4 10 18 28 \& | \& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \& ^ \& X=0 1 2 3 4 5 6 .Ve .PP Each gnomon has the horizontal part \f(CW\*(C`wider\*(C'\fR many steps longer. Each gnomon is still 2 longer than the previous since this widening is a constant amount in each. .SS "N Start" .IX Subsection "N Start" The default is to number points starting N=1 as shown above. An optional \&\f(CW\*(C`n_start\*(C'\fR can give a different start with the same shape etc. For example to start at 0, .PP .Vb 1 \& n_start => 0 \& \& 5 | 25 ... \& 4 | 16 17 18 19 20 \& 3 | 9 10 11 12 21 \& 2 | 4 5 6 13 22 \& 1 | 1 2 7 14 23 \& Y=0 | 0 3 8 15 24 \& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \& X=0 1 2 3 .Ve .PP In Nstart=0 the squares are on the Y axis and the pronic numbers are on the X=Y leading diagonal. .SH "FUNCTIONS" .IX Header "FUNCTIONS" See \*(L"\s-1FUNCTIONS\*(R"\s0 in Math::PlanePath for behaviour common to all path classes. .ie n .IP """$path = Math::PlanePath::Corner\->new ()""" 4 .el .IP "\f(CW$path = Math::PlanePath::Corner\->new ()\fR" 4 .IX Item "$path = Math::PlanePath::Corner->new ()" .PD 0 .ie n .IP """$path = Math::PlanePath::Corner\->new (wider => $w, n_start => $n)""" 4 .el .IP "\f(CW$path = Math::PlanePath::Corner\->new (wider => $w, n_start => $n)\fR" 4 .IX Item "$path = Math::PlanePath::Corner->new (wider => $w, n_start => $n)" .PD Create and return a new path object. .ie n .IP """($x,$y) = $path\->n_to_xy ($n)""" 4 .el .IP "\f(CW($x,$y) = $path\->n_to_xy ($n)\fR" 4 .IX Item "($x,$y) = $path->n_to_xy ($n)" Return the X,Y coordinates of point number \f(CW$n\fR on the path. .Sp For \f(CW\*(C`$n < n_start()\-0.5\*(C'\fR the return is an empty list. There's an extra 0.5 before Nstart, but nothing further before there. .ie n .IP """$n = $path\->xy_to_n ($x,$y)""" 4 .el .IP "\f(CW$n = $path\->xy_to_n ($x,$y)\fR" 4 .IX Item "$n = $path->xy_to_n ($x,$y)" Return the point number for coordinates \f(CW\*(C`$x,$y\*(C'\fR. .Sp \&\f(CW$x\fR and \f(CW$y\fR are each rounded to the nearest integer, which has the effect of treating each point as a square of side 1, so the quadrant x>=\-0.5 and y>=\-0.5 is entirely covered. .ie n .IP """($n_lo, $n_hi) = $path\->rect_to_n_range ($x1,$y1, $x2,$y2)""" 4 .el .IP "\f(CW($n_lo, $n_hi) = $path\->rect_to_n_range ($x1,$y1, $x2,$y2)\fR" 4 .IX Item "($n_lo, $n_hi) = $path->rect_to_n_range ($x1,$y1, $x2,$y2)" The returned range is exact, meaning \f(CW$n_lo\fR and \f(CW$n_hi\fR are the smallest and biggest in the rectangle. .SH "FORMULAS" .IX Header "FORMULAS" .SS "N to X,Y" .IX Subsection "N to X,Y" Counting d=0 for the first L\-shaped gnomon at Y=0, then the start of the gnomon is .PP .Vb 1 \& StartN(d) = d^2 + 1 = 1,2,5,10,17,etc .Ve .PP The current \f(CW\*(C`n_to_xy()\*(C'\fR code extends to the left by an extra 0.5 for fractional N, so for example N=9.5 is at X=\-0.5,Y=3. With this the starting N for each gnomon d is .PP .Vb 1 \& StartNfrac(d) = d^2 + 0.5 .Ve .PP Inverting gives the gnomon d number for an N, .PP .Vb 1 \& d = floor(sqrt(N \- 0.5)) .Ve .PP Subtracting the gnomon start gives an offset into that gnomon .PP .Vb 1 \& OffStart = N \- StartNfrac(d) .Ve .PP The corner point 1,3,7,13,etc where the gnomon turns down is at d+0.5 into that remainder, and it's convenient to subtract that so negative for the horizontal and positive for the vertical, .PP .Vb 2 \& Off = OffStart \- (d+0.5) \& = N \- (d*(d+1) + 1) .Ve .PP Then the X,Y coordinates are .PP .Vb 2 \& if (Off < 0) then X=d+Off, Y=d \& if (Off >= 0) then X=d, Y=d\-Off .Ve .SS "X,Y to N" .IX Subsection "X,Y to N" For a given X,Y the bigger of X or Y determines the d gnomon. .PP If Y>=X then X,Y is on the horizontal part. At X=0 have N=StartN(d) per the Start(N) formula above, and any further X is an offset from there. .PP .Vb 4 \& if Y >= X then \& d=Y \& N = StartN(d) + X \& = Y^2 + 1 + X .Ve .PP Otherwise if Y N increasing \& | \& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- .Ve .PP Going up a column, N values are increasing away from the X=Y diagonal up or down, and all N values above X=Y are bigger than the ones below. .PP .Vb 9 \& | ^ N increasing up from X=Y diagonal \& | | \& | |/ \& | / \& | /| \& | / | N increasing down from X=Y diagonal \& | / v \& |/ \& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- .Ve .PP This means the biggest N is the top right corner if that corner is Y>=X, otherwise the bottom right corner. .PP .Vb 9 \& max N at top right \& | / | \-\-+ if corner Y>=X \& | / \-\-+ | | / \& | / | | |/ \& | / | | | \& | / \-\-\-\-v | /| \& | / max N at bottom right | \-\-+ \& |/ if corner Y<=X |/ \& \-\-\-\-\-\-\-\-\-\- \-\-\-\-\-\-\- .Ve .PP For the smallest N, if the bottom left corner has Y>X then it's in the \&\*(L"increasing\*(R" part and that bottom left corner is the smallest N. Otherwise Y<=X means some of the \*(L"decreasing\*(R" part is covered and the smallest N is at Y=min(X,Ymax), ie. either the Y=X diagonal if it's in the rectangle or the top right corner otherwise. .PP .Vb 8 \& | / \& | | / \& | | / min N at bottom left \& | +\-\-\-\- if corner Y>X \& | / \& | / \& |/ \& \-\-\-\-\-\-\-\-\-\- \& \& | / | / \& | | / | / \& | |/ min N at X=Y | / \& | * if diagonal crossed | / +\-\- min N at top left \& | /| | / | if corner Y= Xmin \& Xmin,min(Xmin,Ymax) if Ymin <= Xmin .Ve .SH "OEIS" .IX Header "OEIS" This path is in Sloane's Online Encyclopedia of Integer Sequences as, .Sp .RS 4 (etc) .RE .PP .Vb 4 \& wider=0, n_start=1 (the defaults) \& A213088 X+Y sum \& A196199 X\-Y diff, being runs \-n to +n \& A053615 abs(X\-Y), runs n to 0 to n, distance to next pronic \& \& A000290 N on X axis, perfect squares starting from 1 \& A002522 N on Y axis, Y^2+1 \& A002061 N on X=Y diagonal, extra initial 1 \& A004201 N on and below X=Y diagonal, so X>=Y \& \& A020703 permutation N at transpose Y,X \& A060734 permutation N by diagonals up from X axis \& A064790 inverse \& A060736 permutation N by diagonals down from Y axis \& A064788 inverse \& \& A027709 boundary length of N unit squares \& A078633 grid sticks of N points \& \& n_start=0 \& A000196 max(X,Y), being floor(sqrt(N)) \& \& A005563 N on X axis, n*(n+2) \& A000290 N on Y axis, perfect squares \& A002378 N on X=Y diagonal, pronic numbers \& \& n_start=2 \& A059100 N on Y axis, Y^2+2 \& A014206 N on X=Y diagonal, pronic+2 \& \& wider=1 \& A053188 abs(X\-Y), dist to nearest square, extra initial 0 \& wider=1, n_start=0 \& A002378 N on Y axis, pronic numbers \& A005563 N on X=Y diagonal, n*(n+2) \& wider=1, n_start=2 \& A014206 N on Y axis, pronic+2 \& \& wider=2, n_start=0 \& A005563 N on Y axis, (Y+1)^2\-1 \& A028552 N on X=Y diagonal, k*(k+3) \& \& wider=3, n_start=0 \& A028552 N on Y axis, k*(k+3) .Ve .SH "SEE ALSO" .IX Header "SEE ALSO" Math::PlanePath, Math::PlanePath::PyramidSides, Math::PlanePath::PyramidRows, Math::PlanePath::SacksSpiral, Math::PlanePath::Diagonals .SH "HOME PAGE" .IX Header "HOME PAGE" .SH "LICENSE" .IX Header "LICENSE" Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde .PP This file is part of Math-PlanePath. .PP Math-PlanePath is free software; you can redistribute it and/or modify it under the terms of the \s-1GNU\s0 General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. .PP Math-PlanePath is distributed in the hope that it will be useful, but \&\s-1WITHOUT ANY WARRANTY\s0; without even the implied warranty of \s-1MERCHANTABILITY\s0 or \s-1FITNESS FOR A PARTICULAR PURPOSE. \s0 See the \s-1GNU\s0 General Public License for more details. .PP You should have received a copy of the \s-1GNU\s0 General Public License along with Math-PlanePath. If not, see .