.\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.28) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{ . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Math::PlanePath::AztecDiamondRings 3pm" .TH Math::PlanePath::AztecDiamondRings 3pm "2014-06-14" "perl v5.20.1" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" Math::PlanePath::AztecDiamondRings \-\- rings around an Aztec diamond shape .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 3 \& use Math::PlanePath::AztecDiamondRings; \& my $path = Math::PlanePath::AztecDiamondRings\->new; \& my ($x, $y) = $path\->n_to_xy (123); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" This path makes rings around an Aztec diamond shape, .PP .Vb 10 \& 46\-45 4 \& / \e \& 47 29\-28 44 3 \& / / \e \e \& 48 30 16\-15 27 43 ... 2 \& / / / \e \e \e \e \& 49 31 17 7\-\-6 14 26 42 62 1 \& / / / / \e \e \e \e \e \& 50 32 18 8 2\-\-1 5 13 25 41 61 <\- Y=0 \& | | | | | | | | | | \& 51 33 19 9 3\-\-4 12 24 40 60 \-1 \& \e \e \e \e / / / / \& 52 34 20 10\-11 23 39 59 \-2 \& \e \e \e / / / \& 53 35 21\-22 38 58 \-3 \& \e \e / / \& 54 36\-37 57 \-4 \& \e / \& 55\-56 \-5 \& \& ^ \& \-5 \-4 \-3 \-2 \-1 X=0 1 2 3 4 5 .Ve .PP This is similar to the \f(CW\*(C`DiamondSpiral\*(C'\fR, but has all four corners flattened to 2 vertical or horizontal, instead of just one in the \f(CW\*(C`DiamondSpiral\*(C'\fR. This is only a small change to the alignment of numbers in the sides, but is more symmetric. .PP Y axis N=1,6,15,28,45,66,etc are the hexagonal numbers k*(2k\-1). The hexagonal numbers of the \*(L"second kind\*(R" 3,10,21,36,55,78, etc k*(2k+1), are the vertical at X=\-1 going downwards. Combining those two is the triangular numbers 3,6,10,15,21,etc, k*(k+1)/2, alternately on one line and the other. Those are the positions of all the horizontal steps, ie. where dY=0. .IX Xref "Hexagonal numbers" .PP X axis N=1,5,13,25,etc is the \*(L"centred square numbers\*(R". Those numbers are made by drawing concentric squares with an extra point on each side each time. The path here grows the same way, adding one extra point to each of the four sides. .IX Xref "Centred square numbers" .PP .Vb 10 \& *\-\-\-*\-\-\-*\-\-\-* \& | | \& | *\-\-\-*\-\-\-* | count total "*"s for \& | | | | centred square numbers \& * | *\-\-\-* | * \& | | | | | | \& | * | * | * | \& | | | | | | \& | | *\-\-\-* | | \& * | | * \& | *\-\-\-*\-\-\-* | \& | | \& *\-\-\-*\-\-\-*\-\-\-* .Ve .SS "N Start" .IX Subsection "N Start" The default is to number points starting N=1 as shown above. An optional \&\f(CW\*(C`n_start\*(C'\fR can give a different start, in the same pattern. For example to start at 0, .PP .Vb 1 \& n_start => 0 \& \& 45 44 \& 46 28 27 43 \& 47 29 15 14 26 42 \& 48 30 16 6 5 13 25 41 \& 49 31 17 7 1 0 4 12 24 40 \& 50 32 18 8 2 3 11 23 39 59 \& 51 33 19 9 10 22 38 58 \& 52 34 20 21 37 57 \& 53 35 36 56 \& 54 55 .Ve .SH "FUNCTIONS" .IX Header "FUNCTIONS" See \*(L"\s-1FUNCTIONS\*(R"\s0 in Math::PlanePath for behaviour common to all path classes. .ie n .IP """$path = Math::PlanePath::AztecDiamondRings\->new ()""" 4 .el .IP "\f(CW$path = Math::PlanePath::AztecDiamondRings\->new ()\fR" 4 .IX Item "$path = Math::PlanePath::AztecDiamondRings->new ()" .PD 0 .ie n .IP """$path = Math::PlanePath::AztecDiamondRings\->new (n_start => $n)""" 4 .el .IP "\f(CW$path = Math::PlanePath::AztecDiamondRings\->new (n_start => $n)\fR" 4 .IX Item "$path = Math::PlanePath::AztecDiamondRings->new (n_start => $n)" .PD Create and return a new Aztec diamond spiral object. .ie n .IP """($x,$y) = $path\->n_to_xy ($n)""" 4 .el .IP "\f(CW($x,$y) = $path\->n_to_xy ($n)\fR" 4 .IX Item "($x,$y) = $path->n_to_xy ($n)" Return the X,Y coordinates of point number \f(CW$n\fR on the path. .Sp For \f(CW\*(C`$n < 1\*(C'\fR the return is an empty list, it being considered the path starts at 1. .ie n .IP """$n = $path\->xy_to_n ($x,$y)""" 4 .el .IP "\f(CW$n = $path\->xy_to_n ($x,$y)\fR" 4 .IX Item "$n = $path->xy_to_n ($x,$y)" Return the point number for coordinates \f(CW\*(C`$x,$y\*(C'\fR. \f(CW$x\fR and \f(CW$y\fR are each rounded to the nearest integer, which has the effect of treating each point in the path as a square of side 1, so the entire plane is covered. .ie n .IP """($n_lo, $n_hi) = $path\->rect_to_n_range ($x1,$y1, $x2,$y2)""" 4 .el .IP "\f(CW($n_lo, $n_hi) = $path\->rect_to_n_range ($x1,$y1, $x2,$y2)\fR" 4 .IX Item "($n_lo, $n_hi) = $path->rect_to_n_range ($x1,$y1, $x2,$y2)" The returned range is exact, meaning \f(CW$n_lo\fR and \f(CW$n_hi\fR are the smallest and biggest in the rectangle. .SH "FORMULAS" .IX Header "FORMULAS" .SS "X,Y to N" .IX Subsection "X,Y to N" The path makes lines in each quadrant. The quadrant is determined by the signs of X and Y, then the line in that quadrant is either d=X+Y or d=X\-Y. A quadratic in d gives a starting N for the line and Y (or X if desired) is an offset from there, .PP .Vb 4 \& Y>=0 X>=0 d=X+Y N=(2d+2)*d+1 + Y \& Y>=0 X<0 d=Y\-X N=2d^2 \- Y \& Y<0 X>=0 d=X\-Y N=(2d+2)*d+1 + Y \& Y<0 X<0 d=X+Y N=(2d+4)*d+2 \- Y .Ve .PP For example .PP .Vb 4 \& Y=2 X=3 d=2+3=5 N=(2*5+2)*5+1 + 2 = 63 \& Y=2 X=\-1 d=2\-(\-1)=3 N=2*3*3 \- 2 = 16 \& Y=\-1 X=4 d=4\-(\-1)=5 N=(2*5+2)*5+1 + \-1 = 60 \& Y=\-2 X=\-3 d=\-3+(\-2)=\-5 N=(2*\-5+4)*\-5+2 \- (\-2) = 34 .Ve .PP The two X>=0 cases are the same N formula and can be combined with an abs, .PP .Vb 1 \& X>=0 d=X+abs(Y) N=(2d+2)*d+1 + Y .Ve .PP This works because at Y=0 the last line of one ring joins up to the start of the next. For example N=11 to N=15, .PP .Vb 5 \& 15 2 \& \e \& 14 1 \& \e \& 13 <\- Y=0 \& \& 12 \-1 \& / \& 11 \-2 \& \& ^ \& X=0 1 2 .Ve .SS "Rectangle to N Range" .IX Subsection "Rectangle to N Range" Within each row N increases as X increases away from the Y axis, and within each column similarly N increases as Y increases away from the X axis. So in a rectangle the maximum N is at one of the four corners of the rectangle. .PP .Vb 8 \& | \& x1,y2 M\-\-\-|\-\-\-\-M x2,y2 \& | | | \& \-\-\-\-\-\-\-O\-\-\-\-\-\-\-\-\- \& | | | \& | | | \& x1,y1 M\-\-\-|\-\-\-\-M x1,y1 \& | .Ve .PP For any two rows y1 and y2, the values in row y2 are all bigger than in y1 if y2>=\-y1. This is so even when y1 and y2 are on the same side of the origin, ie. both positive or both negative. .PP For any two columns x1 and x2, the values in the part with Y>=0 are all bigger if x2>=\-x1, or in the part of the columns with Y<0 it's x2>=\-x1\-1. So the biggest corner is at .PP .Vb 2 \& max_y = (y2 >= \-y1 ? y2 ? y1) \& max_x = (x2 >= \-x1 \- (max_y<0) ? x2 : x1) .Ve .PP The difference in the X handling for Y positive or negative is due to the quadrant ordering. When Y>=0, at X and \-X the bigger N is the X negative side, but when Y<0 it's the X positive side. .PP A similar approach gives the minimum N in a rectangle. .PP .Vb 3 \& min_y = / y2 if y2 < 0, and set xbase=\-1 \& | y1 if y1 > 0, and set xbase=0 \& \e 0 otherwise, and set xbase=0 \& \& min_x = / x2 if x2 < xbase \& | x1 if x1 > xbase \& \e xbase otherwise .Ve .PP The minimum row is Y=0, but if that's not in the rectangle then the y2 or y1 top or bottom edge is the minimum. Then within any row the minimum N is at xbase=0 if Y<0 or xbase=\-1 if Y>=0. If that xbase is not in range then the x2 or x1 left or right edge is the minimum. .SH "OEIS" .IX Header "OEIS" Entries in Sloane's Online Encyclopedia of Integer Sequences related to this path include .Sp .RS 4 (etc) .RE .PP .Vb 2 \& n_start=1 (the default) \& A001844 N on X axis, the centred squares 2k(k+1)+1 \& \& n_start=0 \& A046092 N on X axis, 4*triangular \& A139277 N on diagonal X=Y \& A023532 abs(dY), being 0 if N=k*(k+3)/2 .Ve .SH "SEE ALSO" .IX Header "SEE ALSO" Math::PlanePath, Math::PlanePath::DiamondSpiral .SH "HOME PAGE" .IX Header "HOME PAGE" .SH "LICENSE" .IX Header "LICENSE" Copyright 2011, 2012, 2013, 2014 Kevin Ryde .PP This file is part of Math-PlanePath. .PP Math-PlanePath is free software; you can redistribute it and/or modify it under the terms of the \s-1GNU\s0 General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. .PP Math-PlanePath is distributed in the hope that it will be useful, but \&\s-1WITHOUT ANY WARRANTY\s0; without even the implied warranty of \s-1MERCHANTABILITY\s0 or \s-1FITNESS FOR A PARTICULAR PURPOSE. \s0 See the \s-1GNU\s0 General Public License for more details. .PP You should have received a copy of the \s-1GNU\s0 General Public License along with Math-PlanePath. If not, see .