Scroll to navigation

zlarzb.f(3) LAPACK zlarzb.f(3)

NAME

zlarzb.f -

SYNOPSIS

Functions/Subroutines


subroutine zlarzb (SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
 
ZLARZB applies a block reflector or its conjugate-transpose to a general matrix.

Function/Subroutine Documentation

subroutine zlarzb (characterSIDE, characterTRANS, characterDIRECT, characterSTOREV, integerM, integerN, integerK, integerL, complex*16, dimension( ldv, * )V, integerLDV, complex*16, dimension( ldt, * )T, integerLDT, complex*16, dimension( ldc, * )C, integerLDC, complex*16, dimension( ldwork, * )WORK, integerLDWORK)

ZLARZB applies a block reflector or its conjugate-transpose to a general matrix.
Purpose:
 ZLARZB applies a complex block reflector H or its transpose H**H
 to a complex distributed M-by-N  C from the left or the right.
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Parameters:
SIDE
          SIDE is CHARACTER*1
          = 'L': apply H or H**H from the Left
          = 'R': apply H or H**H from the Right
TRANS
          TRANS is CHARACTER*1
          = 'N': apply H (No transpose)
          = 'C': apply H**H (Conjugate transpose)
DIRECT
          DIRECT is CHARACTER*1
          Indicates how H is formed from a product of elementary
          reflectors
          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV
          STOREV is CHARACTER*1
          Indicates how the vectors which define the elementary
          reflectors are stored:
          = 'C': Columnwise                        (not supported yet)
          = 'R': Rowwise
M
          M is INTEGER
          The number of rows of the matrix C.
N
          N is INTEGER
          The number of columns of the matrix C.
K
          K is INTEGER
          The order of the matrix T (= the number of elementary
          reflectors whose product defines the block reflector).
L
          L is INTEGER
          The number of columns of the matrix V containing the
          meaningful part of the Householder reflectors.
          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
V
          V is COMPLEX*16 array, dimension (LDV,NV).
          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
LDV
          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
T
          T is COMPLEX*16 array, dimension (LDT,K)
          The triangular K-by-K matrix T in the representation of the
          block reflector.
LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= K.
C
          C is COMPLEX*16 array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
WORK
          WORK is COMPLEX*16 array, dimension (LDWORK,K)
LDWORK
          LDWORK is INTEGER
          The leading dimension of the array WORK.
          If SIDE = 'L', LDWORK >= max(1,N);
          if SIDE = 'R', LDWORK >= max(1,M).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
 
Definition at line 183 of file zlarzb.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Oct 15 2014 Version 3.4.2