Scroll to navigation

zhesv.f(3) LAPACK zhesv.f(3)

NAME

zhesv.f -

SYNOPSIS

Functions/Subroutines


subroutine zhesv (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
 
ZHESV computes the solution to system of linear equations A * X = B for HE matrices

Function/Subroutine Documentation

subroutine zhesv (characterUPLO, integerN, integerNRHS, complex*16, dimension( lda, * )A, integerLDA, integer, dimension( * )IPIV, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( * )WORK, integerLWORK, integerINFO)

ZHESV computes the solution to system of linear equations A * X = B for HE matrices
Purpose:
 ZHESV computes the solution to a complex system of linear equations
    A * X = B,
 where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
 matrices.
The diagonal pivoting method is used to factor A as A = U * D * U**H, if UPLO = 'U', or A = L * D * L**H, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then used to solve the system of equations A * X = B.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
On exit, if INFO = 0, the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H as computed by ZHETRF.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D, as
          determined by ZHETRF.  If IPIV(k) > 0, then rows and columns
          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
          then rows and columns k-1 and -IPIV(k) were interchanged and
          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
          diagonal block.
B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK >= 1, and for best performance
          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
          ZHETRF.
          for LWORK < N, TRS will be done with Level BLAS 2
          for LWORK >= N, TRS will be done with Level BLAS 3
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular, so the solution could not be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Definition at line 171 of file zhesv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Oct 15 2014 Version 3.4.2