Scroll to navigation

zhegv.f(3) LAPACK zhegv.f(3)

NAME

zhegv.f -

SYNOPSIS

Functions/Subroutines


subroutine zhegv (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, RWORK, INFO)
 
ZHEGST

Function/Subroutine Documentation

subroutine zhegv (integerITYPE, characterJOBZ, characterUPLO, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( ldb, * )B, integerLDB, double precision, dimension( * )W, complex*16, dimension( * )WORK, integerLWORK, double precision, dimension( * )RWORK, integerINFO)

ZHEGST
Purpose:
 ZHEGV computes all the eigenvalues, and optionally, the eigenvectors
 of a complex generalized Hermitian-definite eigenproblem, of the form
 A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
 Here A and B are assumed to be Hermitian and B is also
 positive definite.
Parameters:
ITYPE
          ITYPE is INTEGER
          Specifies the problem type to be solved:
          = 1:  A*x = (lambda)*B*x
          = 2:  A*B*x = (lambda)*x
          = 3:  B*A*x = (lambda)*x
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
A
          A is COMPLEX*16 array, dimension (LDA, N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of A contains the
          upper triangular part of the matrix A.  If UPLO = 'L',
          the leading N-by-N lower triangular part of A contains
          the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') or the lower triangle (if UPLO='L') of A, including the diagonal, is destroyed.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
B
          B is COMPLEX*16 array, dimension (LDB, N)
          On entry, the Hermitian positive definite matrix B.
          If UPLO = 'U', the leading N-by-N upper triangular part of B
          contains the upper triangular part of the matrix B.
          If UPLO = 'L', the leading N-by-N lower triangular part of B
          contains the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
W
          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK >= max(1,2*N-1).
          For optimal efficiency, LWORK >= (NB+1)*N,
          where NB is the blocksize for ZHETRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORK
          RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  ZPOTRF or ZHEEV returned an error code:
             <= N:  if INFO = i, ZHEEV failed to converge;
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not converge to zero;
             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    minor of order i of B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Definition at line 181 of file zhegv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Oct 15 2014 Version 3.4.2