.TH "zgehd2.f" 3 "Wed Oct 15 2014" "Version 3.4.2" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME zgehd2.f \- .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgehd2\fP (N, ILO, IHI, A, LDA, TAU, WORK, INFO)" .br .RI "\fI\fBZGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&. \fP" .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgehd2 (integerN, integerILO, integerIHI, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )TAU, complex*16, dimension( * )WORK, integerINFO)" .PP \fBZGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&. .PP \fBPurpose: \fP .RS 4 .PP .nf ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H by a unitary similarity transformation: Q**H * A * Q = H . .fi .PP .RE .PP \fBParameters:\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The order of the matrix A. N >= 0. .fi .PP .br \fIILO\fP .PP .nf ILO is INTEGER .fi .PP .br \fIIHI\fP .PP .nf IHI is INTEGER It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to ZGEBAL; otherwise they should be set to 1 and N respectively. See Further Details. 1 <= ILO <= IHI <= max(1,N). .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the n by n general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the elements below the first subdiagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors. See Further Details. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX*16 array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. .fi .PP .RE .PP \fBAuthor:\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBDate:\fP .RS 4 September 2012 .RE .PP \fBFurther Details: \fP .RS 4 .PP .nf The matrix Q is represented as a product of (ihi-ilo) elementary reflectors Q = H(ilo) H(ilo+1) . . . H(ihi-1). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on exit in A(i+2:ihi,i), and tau in TAU(i). The contents of A are illustrated by the following example, with n = 7, ilo = 2 and ihi = 6: on entry, on exit, ( a a a a a a a ) ( a a h h h h a ) ( a a a a a a ) ( a h h h h a ) ( a a a a a a ) ( h h h h h h ) ( a a a a a a ) ( v2 h h h h h ) ( a a a a a a ) ( v2 v3 h h h h ) ( a a a a a a ) ( v2 v3 v4 h h h ) ( a ) ( a ) where a denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i). .fi .PP .RE .PP .PP Definition at line 150 of file zgehd2\&.f\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.