.TH "stprfs.f" 3 "Wed Oct 15 2014" "Version 3.4.2" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME stprfs.f \- .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBstprfs\fP (UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)" .br .RI "\fI\fBSTPRFS\fP \fP" .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine stprfs (characterUPLO, characterTRANS, characterDIAG, integerN, integerNRHS, real, dimension( * )AP, real, dimension( ldb, * )B, integerLDB, real, dimension( ldx, * )X, integerLDX, real, dimension( * )FERR, real, dimension( * )BERR, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)" .PP \fBSTPRFS\fP .PP \fBPurpose: \fP .RS 4 .PP .nf STPRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix. The solution matrix X must be computed by STPTRS or some other means before entering this routine. STPRFS does not do iterative refinement because doing so cannot improve the backward error. .fi .PP .RE .PP \fBParameters:\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular. .fi .PP .br \fITRANS\fP .PP .nf TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose) .fi .PP .br \fIDIAG\fP .PP .nf DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A. N >= 0. .fi .PP .br \fINRHS\fP .PP .nf NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. .fi .PP .br \fIAP\fP .PP .nf AP is REAL array, dimension (N*(N+1)/2) The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1. .fi .PP .br \fIB\fP .PP .nf B is REAL array, dimension (LDB,NRHS) The right hand side matrix B. .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). .fi .PP .br \fIX\fP .PP .nf X is REAL array, dimension (LDX,NRHS) The solution matrix X. .fi .PP .br \fILDX\fP .PP .nf LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). .fi .PP .br \fIFERR\fP .PP .nf FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. .fi .PP .br \fIBERR\fP .PP .nf BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (3*N) .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, dimension (N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor:\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBDate:\fP .RS 4 November 2011 .RE .PP .PP Definition at line 175 of file stprfs\&.f\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.