Scroll to navigation

ssyevd.f(3) LAPACK ssyevd.f(3)

NAME

ssyevd.f -

SYNOPSIS

Functions/Subroutines


subroutine ssyevd (JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK, INFO)
 
SSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices

Function/Subroutine Documentation

subroutine ssyevd (characterJOBZ, characterUPLO, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )W, real, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)

SSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Purpose:
 SSYEVD computes all eigenvalues and, optionally, eigenvectors of a
 real symmetric matrix A. If eigenvectors are desired, it uses a
 divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
Because of large use of BLAS of level 3, SSYEVD needs N**2 more workspace than SSYEVX.
Parameters:
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is REAL array, dimension (LDA, N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of A contains the
          upper triangular part of the matrix A.  If UPLO = 'L',
          the leading N-by-N lower triangular part of A contains
          the lower triangular part of the matrix A.
          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
          orthonormal eigenvectors of the matrix A.
          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
          or the upper triangle (if UPLO='U') of A, including the
          diagonal, is destroyed.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
WORK
          WORK is REAL array,
                                         dimension (LWORK)
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If N <= 1,               LWORK must be at least 1.
          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
          If JOBZ = 'V' and N > 1, LWORK must be at least 
                                                1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK.
          If N <= 1,                LIWORK must be at least 1.
          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                to converge; i off-diagonal elements of an intermediate
                tridiagonal form did not converge to zero;
                if INFO = i and JOBZ = 'V', then the algorithm failed
                to compute an eigenvalue while working on the submatrix
                lying in rows and columns INFO/(N+1) through
                mod(INFO,N+1).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
 

Modified by Francoise Tisseur, University of Tennessee
 

Modified description of INFO. Sven, 16 Feb 05.
 
Definition at line 183 of file ssyevd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Oct 15 2014 Version 3.4.2