.TH "ssbgvx.f" 3 "Wed Oct 15 2014" "Version 3.4.2" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME ssbgvx.f \- .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBssbgvx\fP (JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO)" .br .RI "\fI\fBSSBGST\fP \fP" .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine ssbgvx (characterJOBZ, characterRANGE, characterUPLO, integerN, integerKA, integerKB, real, dimension( ldab, * )AB, integerLDAB, real, dimension( ldbb, * )BB, integerLDBB, real, dimension( ldq, * )Q, integerLDQ, realVL, realVU, integerIL, integerIU, realABSTOL, integerM, real, dimension( * )W, real, dimension( ldz, * )Z, integerLDZ, real, dimension( * )WORK, integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)" .PP \fBSSBGST\fP .PP \fBPurpose: \fP .RS 4 .PP .nf SSBGVX computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and banded, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues. .fi .PP .RE .PP \fBParameters:\fP .RS 4 \fIJOBZ\fP .PP .nf JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. .fi .PP .br \fIRANGE\fP .PP .nf RANGE is CHARACTER*1 = 'A': all eigenvalues will be found. = 'V': all eigenvalues in the half-open interval (VL,VU] will be found. = 'I': the IL-th through IU-th eigenvalues will be found. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrices A and B. N >= 0. .fi .PP .br \fIKA\fP .PP .nf KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0. .fi .PP .br \fIKB\fP .PP .nf KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0. .fi .PP .br \fIAB\fP .PP .nf AB is REAL array, dimension (LDAB, N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB. LDAB >= KA+1. .fi .PP .br \fIBB\fP .PP .nf BB is REAL array, dimension (LDBB, N) On entry, the upper or lower triangle of the symmetric band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th column of the array BB as follows: if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**T*S, as returned by SPBSTF. .fi .PP .br \fILDBB\fP .PP .nf LDBB is INTEGER The leading dimension of the array BB. LDBB >= KB+1. .fi .PP .br \fIQ\fP .PP .nf Q is REAL array, dimension (LDQ, N) If JOBZ = 'V', the n-by-n matrix used in the reduction of A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, and consequently C to tridiagonal form. If JOBZ = 'N', the array Q is not referenced. .fi .PP .br \fILDQ\fP .PP .nf LDQ is INTEGER The leading dimension of the array Q. If JOBZ = 'N', LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). .fi .PP .br \fIVL\fP .PP .nf VL is REAL .fi .PP .br \fIVU\fP .PP .nf VU is REAL If RANGE='V', the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'. .fi .PP .br \fIIL\fP .PP .nf IL is INTEGER .fi .PP .br \fIIU\fP .PP .nf IU is INTEGER If RANGE='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'. .fi .PP .br \fIABSTOL\fP .PP .nf ABSTOL is REAL The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( |a|,|b| ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S'). .fi .PP .br \fIM\fP .PP .nf M is INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. .fi .PP .br \fIW\fP .PP .nf W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. .fi .PP .br \fIZ\fP .PP .nf Z is REAL array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so Z**T*B*Z = I. If JOBZ = 'N', then Z is not referenced. .fi .PP .br \fILDZ\fP .PP .nf LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (7N) .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, dimension (5N) .fi .PP .br \fIIFAIL\fP .PP .nf IFAIL is INTEGER array, dimension (M) If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvalues that failed to converge. If JOBZ = 'N', then IFAIL is not referenced. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0 : successful exit < 0 : if INFO = -i, the i-th argument had an illegal value <= N: if INFO = i, then i eigenvectors failed to converge. Their indices are stored in IFAIL. > N : SPBSTF returned an error code; i.e., if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. .fi .PP .RE .PP \fBAuthor:\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBDate:\fP .RS 4 November 2011 .RE .PP \fBContributors: \fP .RS 4 Mark Fahey, Department of Mathematics, Univ\&. of Kentucky, USA .RE .PP .PP Definition at line 284 of file ssbgvx\&.f\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.