.TH "dlasd4.f" 3 "Wed Oct 15 2014" "Version 3.4.2" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME dlasd4.f \- .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBdlasd4\fP (N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO)" .br .RI "\fI\fBDLASD4\fP computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix\&. Used by dbdsdc\&. \fP" .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine dlasd4 (integerN, integerI, double precision, dimension( * )D, double precision, dimension( * )Z, double precision, dimension( * )DELTA, double precisionRHO, double precisionSIGMA, double precision, dimension( * )WORK, integerINFO)" .PP \fBDLASD4\fP computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix\&. Used by dbdsdc\&. .PP \fBPurpose: \fP .RS 4 .PP .nf This subroutine computes the square root of the I-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix whose entries are given as the squares of the corresponding entries in the array d, and that 0 <= D(i) < D(j) for i < j and that RHO > 0. This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus diag( D ) * diag( D ) + RHO * Z * Z_transpose. where we assume the Euclidean norm of Z is 1. The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions. .fi .PP .RE .PP \fBParameters:\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The length of all arrays. .fi .PP .br \fII\fP .PP .nf I is INTEGER The index of the eigenvalue to be computed. 1 <= I <= N. .fi .PP .br \fID\fP .PP .nf D is DOUBLE PRECISION array, dimension ( N ) The original eigenvalues. It is assumed that they are in order, 0 <= D(I) < D(J) for I < J. .fi .PP .br \fIZ\fP .PP .nf Z is DOUBLE PRECISION array, dimension ( N ) The components of the updating vector. .fi .PP .br \fIDELTA\fP .PP .nf DELTA is DOUBLE PRECISION array, dimension ( N ) If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th component. If N = 1, then DELTA(1) = 1. The vector DELTA contains the information necessary to construct the (singular) eigenvectors. .fi .PP .br \fIRHO\fP .PP .nf RHO is DOUBLE PRECISION The scalar in the symmetric updating formula. .fi .PP .br \fISIGMA\fP .PP .nf SIGMA is DOUBLE PRECISION The computed sigma_I, the I-th updated eigenvalue. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension ( N ) If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th component. If N = 1, then WORK( 1 ) = 1. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit > 0: if INFO = 1, the updating process failed. .fi .PP .RE .PP \fBInternal Parameters: \fP .RS 4 .PP .nf Logical variable ORGATI (origin-at-i?) is used for distinguishing whether D(i) or D(i+1) is treated as the origin. ORGATI = .true. origin at i ORGATI = .false. origin at i+1 Logical variable SWTCH3 (switch-for-3-poles?) is for noting if we are working with THREE poles! MAXIT is the maximum number of iterations allowed for each eigenvalue. .fi .PP .RE .PP \fBAuthor:\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBDate:\fP .RS 4 November 2013 .RE .PP \fBContributors: \fP .RS 4 Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA .RE .PP .PP Definition at line 154 of file dlasd4\&.f\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.