.TH "dgeqrt3.f" 3 "Wed Oct 15 2014" "Version 3.4.2" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME dgeqrt3.f \- .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "recursive subroutine \fBdgeqrt3\fP (M, N, A, LDA, T, LDT, INFO)" .br .RI "\fI\fBDGEQRT3\fP recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q\&. \fP" .in -1c .SH "Function/Subroutine Documentation" .PP .SS "recursive subroutine dgeqrt3 (integerM, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( ldt, * )T, integerLDT, integerINFO)" .PP \fBDGEQRT3\fP recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q\&. .PP \fBPurpose: \fP .RS 4 .PP .nf DGEQRT3 recursively computes a QR factorization of a real M-by-N matrix A, using the compact WY representation of Q. Based on the algorithm of Elmroth and Gustavson, IBM J. Res. Develop. Vol 44 No. 4 July 2000. .fi .PP .RE .PP \fBParameters:\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A. M >= N. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A. N >= 0. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the real M-by-N matrix A. On exit, the elements on and above the diagonal contain the N-by-N upper triangular matrix R; the elements below the diagonal are the columns of V. See below for further details. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). .fi .PP .br \fIT\fP .PP .nf T is DOUBLE PRECISION array, dimension (LDT,N) The N-by-N upper triangular factor of the block reflector. The elements on and above the diagonal contain the block reflector T; the elements below the diagonal are not used. See below for further details. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T. LDT >= max(1,N). .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor:\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBDate:\fP .RS 4 September 2012 .RE .PP \fBFurther Details: \fP .RS 4 .PP .nf The matrix V stores the elementary reflectors H(i) in the i-th column below the diagonal. For example, if M=5 and N=3, the matrix V is V = ( 1 ) ( v1 1 ) ( v1 v2 1 ) ( v1 v2 v3 ) ( v1 v2 v3 ) where the vi's represent the vectors which define H(i), which are returned in the matrix A. The 1's along the diagonal of V are not stored in A. The block reflector H is then given by H = I - V * T * V**T where V**T is the transpose of V. For details of the algorithm, see Elmroth and Gustavson (cited above). .fi .PP .RE .PP .PP Definition at line 133 of file dgeqrt3\&.f\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.