Scroll to navigation

dgeqrfp.f(3) LAPACK dgeqrfp.f(3)

NAME

dgeqrfp.f -

SYNOPSIS

Functions/Subroutines


subroutine dgeqrfp (M, N, A, LDA, TAU, WORK, LWORK, INFO)
 
DGEQRFP

Function/Subroutine Documentation

subroutine dgeqrfp (integerM, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAU, double precision, dimension( * )WORK, integerLWORK, integerINFO)

DGEQRFP
Purpose:
 DGEQRFP computes a QR factorization of a real M-by-N matrix A:
 A = Q * R.
Parameters:
M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
          upper triangular if m >= n); the elements below the diagonal,
          with the array TAU, represent the orthogonal matrix Q as a
          product of min(m,n) elementary reflectors (see Further
          Details).
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
TAU
          TAU is DOUBLE PRECISION array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).
WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= max(1,N).
          For optimum performance LWORK >= N*NB, where NB is
          the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).
Definition at line 137 of file dgeqrfp.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Oct 15 2014 Version 3.4.2