Scroll to navigation

csytf2_rook.f(3) LAPACK csytf2_rook.f(3)

NAME

csytf2_rook.f -

SYNOPSIS

Functions/Subroutines


subroutine csytf2_rook (UPLO, N, A, LDA, IPIV, INFO)
 
CSYTF2_ROOK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method (unblocked algorithm).

Function/Subroutine Documentation

subroutine csytf2_rook (characterUPLO, integerN, complex, dimension( lda, * )A, integerLDA, integer, dimension( * )IPIV, integerINFO)

CSYTF2_ROOK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method (unblocked algorithm).
Purpose:
 CSYTF2_ROOK computes the factorization of a complex symmetric matrix A
 using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, U**T is the transpose of U, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Parameters:
UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used to obtain the factor U or L (see below for further details).
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.
If UPLO = 'U': If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k-1 and -IPIV(k-1) were inerchaged, D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L': If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and columns k and -IPIV(k) were interchanged and rows and columns k+1 and -IPIV(k+1) were inerchaged, D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular, and division by zero will occur if it
               is used to solve a system of equations.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2013
Further Details:
  If UPLO = 'U', then A = U*D*U**T, where
     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s U(k) = ( 0 I 0 ) s ( 0 0 I ) n-k k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L**T, where L = P(1)*L(1)* ... *P(k)*L(k)* ..., i.e., L is a product of terms P(k)*L(k), where k increases from 1 to n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as defined by IPIV(k), and L(k) is a unit lower triangular matrix, such that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1 L(k) = ( 0 I 0 ) s ( 0 v I ) n-k-s+1 k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
Contributors:
  November 2013,     Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester
01-01-96 - Based on modifications by J. Lewis, Boeing Computer Services Company A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville abd , USA
Definition at line 195 of file csytf2_rook.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Oct 15 2014 Version 3.4.2