Scroll to navigation

chpsvx.f(3) LAPACK chpsvx.f(3)

NAME

chpsvx.f -

SYNOPSIS

Functions/Subroutines


subroutine chpsvx (FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
 
CHPSVX computes the solution to system of linear equations A * X = B for OTHER matrices

Function/Subroutine Documentation

subroutine chpsvx (characterFACT, characterUPLO, integerN, integerNRHS, complex, dimension( * )AP, complex, dimension( * )AFP, integer, dimension( * )IPIV, complex, dimension( ldb, * )B, integerLDB, complex, dimension( ldx, * )X, integerLDX, realRCOND, real, dimension( * )FERR, real, dimension( * )BERR, complex, dimension( * )WORK, real, dimension( * )RWORK, integerINFO)

CHPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Purpose:
 CHPSVX uses the diagonal pivoting factorization A = U*D*U**H or
 A = L*D*L**H to compute the solution to a complex system of linear
 equations A * X = B, where A is an N-by-N Hermitian matrix stored
 in packed format and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also provided.
Description:
 The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A as A = U * D * U**H, if UPLO = 'U', or A = L * D * L**H, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine returns with INFO = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, INFO = N+1 is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form of A.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
Parameters:
FACT
          FACT is CHARACTER*1
          Specifies whether or not the factored form of A has been
          supplied on entry.
          = 'F':  On entry, AFP and IPIV contain the factored form of
                  A.  AFP and IPIV will not be modified.
          = 'N':  The matrix A will be copied to AFP and factored.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.
NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
AP
          AP is COMPLEX array, dimension (N*(N+1)/2)
          The upper or lower triangle of the Hermitian matrix A, packed
          columnwise in a linear array.  The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.
AFP
          AFP is COMPLEX array, dimension (N*(N+1)/2)
          If FACT = 'F', then AFP is an input argument and on entry
          contains the block diagonal matrix D and the multipliers used
          to obtain the factor U or L from the factorization
          A = U*D*U**H or A = L*D*L**H as computed by CHPTRF, stored as
          a packed triangular matrix in the same storage format as A.
If FACT = 'N', then AFP is an output argument and on exit contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H as computed by CHPTRF, stored as a packed triangular matrix in the same storage format as A.
IPIV
          IPIV is INTEGER array, dimension (N)
          If FACT = 'F', then IPIV is an input argument and on entry
          contains details of the interchanges and the block structure
          of D, as determined by CHPTRF.
          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
          interchanged and D(k,k) is a 1-by-1 diagonal block.
          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit contains details of the interchanges and the block structure of D, as determined by CHPTRF.
B
          B is COMPLEX array, dimension (LDB,NRHS)
          The N-by-NRHS right hand side matrix B.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
X
          X is COMPLEX array, dimension (LDX,NRHS)
          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
RCOND
          RCOND is REAL
          The estimate of the reciprocal condition number of the matrix
          A.  If RCOND is less than the machine precision (in
          particular, if RCOND = 0), the matrix is singular to working
          precision.  This condition is indicated by a return code of
          INFO > 0.
FERR
          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
BERR
          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
WORK
          WORK is COMPLEX array, dimension (2*N)
RWORK
          RWORK is REAL array, dimension (N)
INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is
                <= N:  D(i,i) is exactly zero.  The factorization
                       has been completed but the factor D is exactly
                       singular, so the solution and error bounds could
                       not be computed. RCOND = 0 is returned.
                = N+1: D is nonsingular, but RCOND is less than machine
                       precision, meaning that the matrix is singular
                       to working precision.  Nevertheless, the
                       solution and error bounds are computed because
                       there are a number of situations where the
                       computed solution can be more accurate than the
                       value of RCOND would suggest.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012
Further Details:
  The packed storage scheme is illustrated by the following example
  when N = 4, UPLO = 'U':
Two-dimensional storage of the Hermitian matrix A:
a11 a12 a13 a14 a22 a23 a24 a33 a34 (aij = conjg(aji)) a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
Definition at line 277 of file chpsvx.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.
Wed Oct 15 2014 Version 3.4.2