Scroll to navigation

MPI4PY(1) MPI for Python MPI4PY(1)

NAME

mpi4py - MPI for Python

Lisandro Dalcin
dalcinl@gmail.com
November 05, 2021

Abstract

This document describes the MPI for Python package. MPI for Python provides Python bindings for the Message Passing Interface (MPI) standard, allowing Python applications to exploit multiple processors on workstations, clusters and supercomputers.

This package builds on the MPI specification and provides an object oriented interface resembling the MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communication of any picklable Python object, as well as efficient communication of Python objects exposing the Python buffer interface (e.g. NumPy arrays and builtin bytes/array/memoryview objects).

INTRODUCTION

Over the last years, high performance computing has become an affordable resource to many more researchers in the scientific community than ever before. The conjunction of quality open source software and commodity hardware strongly influenced the now widespread popularity of Beowulf class clusters and cluster of workstations.

Among many parallel computational models, message-passing has proven to be an effective one. This paradigm is specially suited for (but not limited to) distributed memory architectures and is used in today’s most demanding scientific and engineering application related to modeling, simulation, design, and signal processing. However, portable message-passing parallel programming used to be a nightmare in the past because of the many incompatible options developers were faced to. Fortunately, this situation definitely changed after the MPI Forum released its standard specification.

High performance computing is traditionally associated with software development using compiled languages. However, in typical applications programs, only a small part of the code is time-critical enough to require the efficiency of compiled languages. The rest of the code is generally related to memory management, error handling, input/output, and user interaction, and those are usually the most error prone and time-consuming lines of code to write and debug in the whole development process. Interpreted high-level languages can be really advantageous for this kind of tasks.

For implementing general-purpose numerical computations, MATLAB [1] is the dominant interpreted programming language. In the open source side, Octave and Scilab are well known, freely distributed software packages providing compatibility with the MATLAB language. In this work, we present MPI for Python, a new package enabling applications to exploit multiple processors using standard MPI “look and feel” in Python scripts.

[1]
MATLAB is a registered trademark of The MathWorks, Inc.

What is MPI?

MPI, [mpi-using] [mpi-ref] the Message Passing Interface, is a standardized and portable message-passing system designed to function on a wide variety of parallel computers. The standard defines the syntax and semantics of library routines and allows users to write portable programs in the main scientific programming languages (Fortran, C, or C++).

Since its release, the MPI specification [mpi-std1] [mpi-std2] has become the leading standard for message-passing libraries for parallel computers. Implementations are available from vendors of high-performance computers and from well known open source projects like MPICH [mpi-mpich] and Open MPI [mpi-openmpi].

What is Python?

Python is a modern, easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective approach to object-oriented programming with dynamic typing and dynamic binding. It supports modules and packages, which encourages program modularity and code reuse. Python’s elegant syntax, together with its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most platforms.

The Python interpreter and the extensive standard library are available in source or binary form without charge for all major platforms, and can be freely distributed. It is easily extended with new functions and data types implemented in C or C++. Python is also suitable as an extension language for customizable applications.

Python is an ideal candidate for writing the higher-level parts of large-scale scientific applications [Hinsen97] and driving simulations in parallel architectures [Beazley97] like clusters of PC’s or SMP’s. Python codes are quickly developed, easily maintained, and can achieve a high degree of integration with other libraries written in compiled languages.

As this work started and evolved, some ideas were borrowed from well known MPI and Python related open source projects from the Internet.

OOMPI
  • It has no relation with Python, but is an excellent object oriented approach to MPI.
  • It is a C++ class library specification layered on top of the C bindings that encapsulates MPI into a functional class hierarchy.
  • It provides a flexible and intuitive interface by adding some abstractions, like Ports and Messages, which enrich and simplify the syntax.

Pypar
  • Its interface is rather minimal. There is no support for communicators or process topologies.
  • It does not require the Python interpreter to be modified or recompiled, but does not permit interactive parallel runs.
  • General (picklable) Python objects of any type can be communicated. There is good support for numeric arrays, practically full MPI bandwidth can be achieved.

pyMPI
  • It rebuilds the Python interpreter providing a built-in module for message passing. It does permit interactive parallel runs, which are useful for learning and debugging.
  • It provides an interface suitable for basic parallel programing. There is not full support for defining new communicators or process topologies.
  • General (picklable) Python objects can be messaged between processors. There is not support for numeric arrays.

Scientific Python
  • It provides a collection of Python modules that are useful for scientific computing.
  • There is an interface to MPI and BSP (Bulk Synchronous Parallel programming).
  • The interface is simple but incomplete and does not resemble the MPI specification. There is support for numeric arrays.


Additionally, we would like to mention some available tools for scientific computing and software development with Python.

  • NumPy is a package that provides array manipulation and computational capabilities similar to those found in IDL, MATLAB, or Octave. Using NumPy, it is possible to write many efficient numerical data processing applications directly in Python without using any C, C++ or Fortran code.
  • SciPy is an open source library of scientific tools for Python, gathering a variety of high level science and engineering modules together as a single package. It includes modules for graphics and plotting, optimization, integration, special functions, signal and image processing, genetic algorithms, ODE solvers, and others.
  • Cython is a language that makes writing C extensions for the Python language as easy as Python itself. The Cython language is very close to the Python language, but Cython additionally supports calling C functions and declaring C types on variables and class attributes. This allows the compiler to generate very efficient C code from Cython code. This makes Cython the ideal language for wrapping for external C libraries, and for fast C modules that speed up the execution of Python code.
  • SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level programming languages like Perl, Tcl/Tk, Ruby and Python. Issuing header files to SWIG is the simplest approach to interfacing C/C++ libraries from a Python module.

[mpi-std1]
MPI Forum. MPI: A Message Passing Interface Standard. International Journal of Supercomputer Applications, volume 8, number 3-4, pages 159-416, 1994.
[mpi-std2]
MPI Forum. MPI: A Message Passing Interface Standard. High Performance Computing Applications, volume 12, number 1-2, pages 1-299, 1998.
[mpi-using]
William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel programming with the message-passing interface. MIT Press, 1994.
[mpi-ref]
Mark Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI - The Complete Reference, volume 1, The MPI Core. MIT Press, 2nd. edition, 1998.
[mpi-mpich]
W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing, 22(6):789-828, September 1996.
[mpi-openmpi]
Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004.
[Hinsen97]
Konrad Hinsen. The Molecular Modelling Toolkit: a case study of a large scientific application in Python. In Proceedings of the 6th International Python Conference, pages 29-35, San Jose, Ca., October 1997.
[Beazley97]
David M. Beazley and Peter S. Lomdahl. Feeding a large-scale physics application to Python. In Proceedings of the 6th International Python Conference, pages 21-29, San Jose, Ca., October 1997.

OVERVIEW

MPI for Python provides an object oriented approach to message passing which grounds on the standard MPI-2 C++ bindings. The interface was designed with focus in translating MPI syntax and semantics of standard MPI-2 bindings for C++ to Python. Any user of the standard C/C++ MPI bindings should be able to use this module without need of learning a new interface.

Communicating Python Objects and Array Data

The Python standard library supports different mechanisms for data persistence. Many of them rely on disk storage, but pickling and marshaling can also work with memory buffers.

The pickle modules provide user-extensible facilities to serialize general Python objects using ASCII or binary formats. The marshal module provides facilities to serialize built-in Python objects using a binary format specific to Python, but independent of machine architecture issues.

MPI for Python can communicate any built-in or user-defined Python object taking advantage of the features provided by the pickle module. These facilities will be routinely used to build binary representations of objects to communicate (at sending processes), and restoring them back (at receiving processes).

Although simple and general, the serialization approach (i.e., pickling and unpickling) previously discussed imposes important overheads in memory as well as processor usage, especially in the scenario of objects with large memory footprints being communicated. Pickling general Python objects, ranging from primitive or container built-in types to user-defined classes, necessarily requires computer resources. Processing is also needed for dispatching the appropriate serialization method (that depends on the type of the object) and doing the actual packing. Additional memory is always needed, and if its total amount is not known a priori, many reallocations can occur. Indeed, in the case of large numeric arrays, this is certainly unacceptable and precludes communication of objects occupying half or more of the available memory resources.

MPI for Python supports direct communication of any object exporting the single-segment buffer interface. This interface is a standard Python mechanism provided by some types (e.g., strings and numeric arrays), allowing access in the C side to a contiguous memory buffer (i.e., address and length) containing the relevant data. This feature, in conjunction with the capability of constructing user-defined MPI datatypes describing complicated memory layouts, enables the implementation of many algorithms involving multidimensional numeric arrays (e.g., image processing, fast Fourier transforms, finite difference schemes on structured Cartesian grids) directly in Python, with negligible overhead, and almost as fast as compiled Fortran, C, or C++ codes.

Communicators

In MPI for Python, Comm is the base class of communicators. The Intracomm and Intercomm classes are sublcasses of the Comm class. The Comm.Is_inter method (and Comm.Is_intra, provided for convenience but not part of the MPI specification) is defined for communicator objects and can be used to determine the particular communicator class.

The two predefined intracommunicator instances are available: COMM_SELF and COMM_WORLD. From them, new communicators can be created as needed.

The number of processes in a communicator and the calling process rank can be respectively obtained with methods Comm.Get_size and Comm.Get_rank. The associated process group can be retrieved from a communicator by calling the Comm.Get_group method, which returns an instance of the Group class. Set operations with Group objects like like Group.Union, Group.Intersection and Group.Difference are fully supported, as well as the creation of new communicators from these groups using Comm.Create and Comm.Create_group.

New communicator instances can be obtained with the Comm.Clone, Comm.Dup and Comm.Split methods, as well methods Intracomm.Create_intercomm and Intercomm.Merge.

Virtual topologies (Cartcomm, Graphcomm and Distgraphcomm classes, which are specializations of the Intracomm class) are fully supported. New instances can be obtained from intracommunicator instances with factory methods Intracomm.Create_cart and Intracomm.Create_graph.

Point-to-Point Communications

Point to point communication is a fundamental capability of message passing systems. This mechanism enables the transmission of data between a pair of processes, one side sending, the other receiving.

MPI provides a set of send and receive functions allowing the communication of typed data with an associated tag. The type information enables the conversion of data representation from one architecture to another in the case of heterogeneous computing environments; additionally, it allows the representation of non-contiguous data layouts and user-defined datatypes, thus avoiding the overhead of (otherwise unavoidable) packing/unpacking operations. The tag information allows selectivity of messages at the receiving end.

Blocking Communications

MPI provides basic send and receive functions that are blocking. These functions block the caller until the data buffers involved in the communication can be safely reused by the application program.

In MPI for Python, the Comm.Send, Comm.Recv and Comm.Sendrecv methods of communicator objects provide support for blocking point-to-point communications within Intracomm and Intercomm instances. These methods can communicate memory buffers. The variants Comm.send, Comm.recv and Comm.sendrecv can communicate general Python objects.

Nonblocking Communications

On many systems, performance can be significantly increased by overlapping communication and computation. This is particularly true on systems where communication can be executed autonomously by an intelligent, dedicated communication controller.

MPI provides nonblocking send and receive functions. They allow the possible overlap of communication and computation. Non-blocking communication always come in two parts: posting functions, which begin the requested operation; and test-for-completion functions, which allow to discover whether the requested operation has completed.

In MPI for Python, the Comm.Isend and Comm.Irecv methods initiate send and receive operations, respectively. These methods return a Request instance, uniquely identifying the started operation. Its completion can be managed using the Request.Test, Request.Wait and Request.Cancel methods. The management of Request objects and associated memory buffers involved in communication requires a careful, rather low-level coordination. Users must ensure that objects exposing their memory buffers are not accessed at the Python level while they are involved in nonblocking message-passing operations.

Persistent Communications

Often a communication with the same argument list is repeatedly executed within an inner loop. In such cases, communication can be further optimized by using persistent communication, a particular case of nonblocking communication allowing the reduction of the overhead between processes and communication controllers. Furthermore , this kind of optimization can also alleviate the extra call overheads associated to interpreted, dynamic languages like Python.

In MPI for Python, the Comm.Send_init and Comm.Recv_init methods create persistent requests for a send and receive operation, respectively. These methods return an instance of the Prequest class, a subclass of the Request class. The actual communication can be effectively started using the Prequest.Start method, and its completion can be managed as previously described.

Collective Communications

Collective communications allow the transmittal of data between multiple processes of a group simultaneously. The syntax and semantics of collective functions is consistent with point-to-point communication. Collective functions communicate typed data, but messages are not paired with an associated tag; selectivity of messages is implied in the calling order. Additionally, collective functions come in blocking versions only.

The more commonly used collective communication operations are the following.

  • Barrier synchronization across all group members.
  • Global communication functions
  • Broadcast data from one member to all members of a group.
  • Gather data from all members to one member of a group.
  • Scatter data from one member to all members of a group.

Global reduction operations such as sum, maximum, minimum, etc.

In MPI for Python, the Comm.Bcast, Comm.Scatter, Comm.Gather, Comm.Allgather, Comm.Alltoall methods provide support for collective communications of memory buffers. The lower-case variants Comm.bcast, Comm.scatter, Comm.gather, Comm.allgather and Comm.alltoall can communicate general Python objects. The vector variants (which can communicate different amounts of data to each process) Comm.Scatterv, Comm.Gatherv, Comm.Allgatherv, Comm.Alltoallv and Comm.Alltoallw are also supported, they can only communicate objects exposing memory buffers.

Global reducion operations on memory buffers are accessible through the Comm.Reduce, Comm.Reduce_scatter, Comm.Allreduce, Intracomm.Scan and Intracomm.Exscan methods. The lower-case variants Comm.reduce, Comm.allreduce, Intracomm.scan and Intracomm.exscan can communicate general Python objects; however, the actual required reduction computations are performed sequentially at some process. All the predefined (i.e., SUM, PROD, MAX, etc.) reduction operations can be applied.

Support for GPU-aware MPI

Several MPI implementations, including Open MPI and MVAPICH, support passing GPU pointers to MPI calls to avoid explict data movement between the host and the device. On the Python side, GPU arrays have been implemented by many libraries that need GPU computation, such as CuPy, Numba, PyTorch, and PyArrow. In order to increase library interoperability, two kinds of zero-copy data exchange protocols are defined and agreed upon: DLPack and CUDA Array Interface. For example, a CuPy array can be passed to a Numba CUDA-jit kernel.

MPI for Python provides an experimental support for GPU-aware MPI. This feature requires:

1.
mpi4py is built against a GPU-aware MPI library.
2.
The Python GPU arrays are compliant with either of the protocols.

See the tutorial section for further information. We note that

  • Whether or not a MPI call can work for GPU arrays depends on the underlying MPI implementation, not on mpi4py.
  • This support is currently experimental and subject to change in the future.

Dynamic Process Management

In the context of the MPI-1 specification, a parallel application is static; that is, no processes can be added to or deleted from a running application after it has been started. Fortunately, this limitation was addressed in MPI-2. The new specification added a process management model providing a basic interface between an application and external resources and process managers.

This MPI-2 extension can be really useful, especially for sequential applications built on top of parallel modules, or parallel applications with a client/server model. The MPI-2 process model provides a mechanism to create new processes and establish communication between them and the existing MPI application. It also provides mechanisms to establish communication between two existing MPI applications, even when one did not start the other.

In MPI for Python, new independent process groups can be created by calling the Intracomm.Spawn method within an intracommunicator. This call returns a new intercommunicator (i.e., an Intercomm instance) at the parent process group. The child process group can retrieve the matching intercommunicator by calling the Comm.Get_parent class method. At each side, the new intercommunicator can be used to perform point to point and collective communications between the parent and child groups of processes.

Alternatively, disjoint groups of processes can establish communication using a client/server approach. Any server application must first call the Open_port function to open a port and the Publish_name function to publish a provided service, and next call the Intracomm.Accept method. Any client applications can first find a published service by calling the Lookup_name function, which returns the port where a server can be contacted; and next call the Intracomm.Connect method. Both Intracomm.Accept and Intracomm.Connect methods return an Intercomm instance. When connection between client/server processes is no longer needed, all of them must cooperatively call the Comm.Disconnect method. Additionally, server applications should release resources by calling the Unpublish_name and Close_port functions.

One-Sided Communications

One-sided communications (also called Remote Memory Access, RMA) supplements the traditional two-sided, send/receive based MPI communication model with a one-sided, put/get based interface. One-sided communication that can take advantage of the capabilities of highly specialized network hardware. Additionally, this extension lowers latency and software overhead in applications written using a shared-memory-like paradigm.

The MPI specification revolves around the use of objects called windows; they intuitively specify regions of a process’s memory that have been made available for remote read and write operations. The published memory blocks can be accessed through three functions for put (remote send), get (remote write), and accumulate (remote update or reduction) data items. A much larger number of functions support different synchronization styles; the semantics of these synchronization operations are fairly complex.

In MPI for Python, one-sided operations are available by using instances of the Win class. New window objects are created by calling the Win.Create method at all processes within a communicator and specifying a memory buffer . When a window instance is no longer needed, the Win.Free method should be called.

The three one-sided MPI operations for remote write, read and reduction are available through calling the methods Win.Put, Win.Get, and Win.Accumulate respectively within a Win instance. These methods need an integer rank identifying the target process and an integer offset relative the base address of the remote memory block being accessed.

The one-sided operations read, write, and reduction are implicitly nonblocking, and must be synchronized by using two primary modes. Active target synchronization requires the origin process to call the Win.Start and Win.Complete methods at the origin process, and target process cooperates by calling the Win.Post and Win.Wait methods. There is also a collective variant provided by the Win.Fence method. Passive target synchronization is more lenient, only the origin process calls the Win.Lock and Win.Unlock methods. Locks are used to protect remote accesses to the locked remote window and to protect local load/store accesses to a locked local window.

Parallel Input/Output

The POSIX standard provides a model of a widely portable file system. However, the optimization needed for parallel input/output cannot be achieved with this generic interface. In order to ensure efficiency and scalability, the underlying parallel input/output system must provide a high-level interface supporting partitioning of file data among processes and a collective interface supporting complete transfers of global data structures between process memories and files. Additionally, further efficiencies can be gained via support for asynchronous input/output, strided accesses to data, and control over physical file layout on storage devices. This scenario motivated the inclusion in the MPI-2 standard of a custom interface in order to support more elaborated parallel input/output operations.

The MPI specification for parallel input/output revolves around the use objects called files. As defined by MPI, files are not just contiguous byte streams. Instead, they are regarded as ordered collections of typed data items. MPI supports sequential or random access to any integral set of these items. Furthermore, files are opened collectively by a group of processes.

The common patterns for accessing a shared file (broadcast, scatter, gather, reduction) is expressed by using user-defined datatypes. Compared to the communication patterns of point-to-point and collective communications, this approach has the advantage of added flexibility and expressiveness. Data access operations (read and write) are defined for different kinds of positioning (using explicit offsets, individual file pointers, and shared file pointers), coordination (non-collective and collective), and synchronism (blocking, nonblocking, and split collective with begin/end phases).

In MPI for Python, all MPI input/output operations are performed through instances of the File class. File handles are obtained by calling the File.Open method at all processes within a communicator and providing a file name and the intended access mode. After use, they must be closed by calling the File.Close method. Files even can be deleted by calling method File.Delete.

After creation, files are typically associated with a per-process view. The view defines the current set of data visible and accessible from an open file as an ordered set of elementary datatypes. This data layout can be set and queried with the File.Set_view and File.Get_view methods respectively.

Actual input/output operations are achieved by many methods combining read and write calls with different behavior regarding positioning, coordination, and synchronism. Summing up, MPI for Python provides the thirty (30) methods defined in MPI-2 for reading from or writing to files using explicit offsets or file pointers (individual or shared), in blocking or nonblocking and collective or noncollective versions.

Environmental Management

Initialization and Exit

Module functions Init or Init_thread and Finalize provide MPI initialization and finalization respectively. Module functions Is_initialized and Is_finalized provide the respective tests for initialization and finalization.

NOTE:

MPI_Init() or MPI_Init_thread() is actually called when you import the MPI module from the mpi4py package, but only if MPI is not already initialized. In such case, calling Init or Init_thread from Python is expected to generate an MPI error, and in turn an exception will be raised.


NOTE:

MPI_Finalize() is registered (by using Python C/API function Py_AtExit()) for being automatically called when Python processes exit, but only if mpi4py actually initialized MPI. Therefore, there is no need to call Finalize from Python to ensure MPI finalization.


Implementation Information

  • The MPI version number can be retrieved from module function Get_version. It returns a two-integer tuple (version, subversion).
  • The Get_processor_name function can be used to access the processor name.
  • The values of predefined attributes attached to the world communicator can be obtained by calling the Comm.Get_attr method within the COMM_WORLD instance.

Timers

MPI timer functionalities are available through the Wtime and Wtick functions.

Error Handling

In order facilitate handle sharing with other Python modules interfacing MPI-based parallel libraries, the predefined MPI error handlers ERRORS_RETURN and ERRORS_ARE_FATAL can be assigned to and retrieved from communicators using methods Comm.Set_errhandler and Comm.Get_errhandler, and similarly for windows and files.

When the predefined error handler ERRORS_RETURN is set, errors returned from MPI calls within Python code will raise an instance of the exception class Exception, which is a subclass of the standard Python exception python:RuntimeError.

NOTE:

After import, mpi4py overrides the default MPI rules governing inheritance of error handlers. The ERRORS_RETURN error handler is set in the predefined COMM_SELF and COMM_WORLD communicators, as well as any new Comm, Win, or File instance created through mpi4py. If you ever pass such handles to C/C++/Fortran library code, it is recommended to set the ERRORS_ARE_FATAL error handler on them to ensure MPI errors do not pass silently.


WARNING:

Importing with from mpi4py.MPI import * will cause a name clashing with the standard Python python:Exception base class.


TUTORIAL

WARNING:

Under construction. Contributions very welcome!


MPI for Python supports convenient, pickle-based communication of generic Python object as well as fast, near C-speed, direct array data communication of buffer-provider objects (e.g., NumPy arrays).

Communication of generic Python objects

You have to use methods with all-lowercase names, like Comm.send, Comm.recv, Comm.bcast, Comm.scatter, Comm.gather . An object to be sent is passed as a parameter to the communication call, and the received object is simply the return value.

The Comm.isend and Comm.irecv methods return Request instances; completion of these methods can be managed using the Request.test and Request.wait methods.

The Comm.recv and Comm.irecv methods may be passed a buffer object that can be repeatedly used to receive messages avoiding internal memory allocation. This buffer must be sufficiently large to accommodate the transmitted messages; hence, any buffer passed to Comm.recv or Comm.irecv must be at least as long as the pickled data transmitted to the receiver.

Collective calls like Comm.scatter, Comm.gather, Comm.allgather, Comm.alltoall expect a single value or a sequence of Comm.size elements at the root or all process. They return a single value, a list of Comm.size elements, or None.

NOTE:

MPI for Python uses the highest protocol version available in the Python runtime (see the HIGHEST_PROTOCOL constant in the pickle module). The default protocol can be changed at import time by setting the MPI4PY_PICKLE_PROTOCOL environment variable, or at runtime by assigning a different value to the PROTOCOL attribute of the pickle object within the MPI module.


Communication of buffer-like objects

You have to use method names starting with an upper-case letter, like Comm.Send, Comm.Recv, Comm.Bcast, Comm.Scatter, Comm.Gather.

In general, buffer arguments to these calls must be explicitly specified by using a 2/3-list/tuple like [data, MPI.DOUBLE], or [data, count, MPI.DOUBLE] (the former one uses the byte-size of data and the extent of the MPI datatype to define count).

For vector collectives communication operations like Comm.Scatterv and Comm.Gatherv, buffer arguments are specified as [data, count, displ, datatype], where count and displ are sequences of integral values.

Automatic MPI datatype discovery for NumPy/GPU arrays and PEP-3118 buffers is supported, but limited to basic C types (all C/C99-native signed/unsigned integral types and single/double precision real/complex floating types) and availability of matching datatypes in the underlying MPI implementation. In this case, the buffer-provider object can be passed directly as a buffer argument, the count and MPI datatype will be inferred.

If mpi4py is built against a GPU-aware MPI implementation, GPU arrays can be passed to upper-case methods as long as they have either the __dlpack__ and __dlpack_device__ methods or the __cuda_array_interface__ attribute that are compliant with the respective standard specifications. Moreover, only C-contiguous or Fortran-contiguous GPU arrays are supported. It is important to note that GPU buffers must be fully ready before any MPI routines operate on them to avoid race conditions. This can be ensured by using the synchronization API of your array library. mpi4py does not have access to any GPU-specific functionality and thus cannot perform this operation automatically for users.


Running Python scripts with MPI

Most MPI programs can be run with the command mpiexec. In practice, running Python programs looks like:

$ mpiexec -n 4 python script.py


to run the program with 4 processors.

Point-to-Point Communication

Python objects (pickle under the hood):

from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:

data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11) elif rank == 1:
data = comm.recv(source=0, tag=11)


Python objects with non-blocking communication:

from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:

data = {'a': 7, 'b': 3.14}
req = comm.isend(data, dest=1, tag=11)
req.wait() elif rank == 1:
req = comm.irecv(source=0, tag=11)
data = req.wait()


NumPy arrays (the fast way!):

from mpi4py import MPI
import numpy
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
# passing MPI datatypes explicitly
if rank == 0:

data = numpy.arange(1000, dtype='i')
comm.Send([data, MPI.INT], dest=1, tag=77) elif rank == 1:
data = numpy.empty(1000, dtype='i')
comm.Recv([data, MPI.INT], source=0, tag=77) # automatic MPI datatype discovery if rank == 0:
data = numpy.arange(100, dtype=numpy.float64)
comm.Send(data, dest=1, tag=13) elif rank == 1:
data = numpy.empty(100, dtype=numpy.float64)
comm.Recv(data, source=0, tag=13)



Collective Communication

Broadcasting a Python dictionary:

from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:

data = {'key1' : [7, 2.72, 2+3j],
'key2' : ( 'abc', 'xyz')} else:
data = None data = comm.bcast(data, root=0)


Scattering Python objects:

from mpi4py import MPI
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
if rank == 0:

data = [(i+1)**2 for i in range(size)] else:
data = None data = comm.scatter(data, root=0) assert data == (rank+1)**2


Gathering Python objects:

from mpi4py import MPI
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
data = (rank+1)**2
data = comm.gather(data, root=0)
if rank == 0:

for i in range(size):
assert data[i] == (i+1)**2 else:
assert data is None


Broadcasting a NumPy array:

from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:

data = np.arange(100, dtype='i') else:
data = np.empty(100, dtype='i') comm.Bcast(data, root=0) for i in range(100):
assert data[i] == i


Scattering NumPy arrays:

from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
sendbuf = None
if rank == 0:

sendbuf = np.empty([size, 100], dtype='i')
sendbuf.T[:,:] = range(size) recvbuf = np.empty(100, dtype='i') comm.Scatter(sendbuf, recvbuf, root=0) assert np.allclose(recvbuf, rank)


Gathering NumPy arrays:

from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
sendbuf = np.zeros(100, dtype='i') + rank
recvbuf = None
if rank == 0:

recvbuf = np.empty([size, 100], dtype='i') comm.Gather(sendbuf, recvbuf, root=0) if rank == 0:
for i in range(size):
assert np.allclose(recvbuf[i,:], i)


Parallel matrix-vector product:

from mpi4py import MPI
import numpy
def matvec(comm, A, x):

m = A.shape[0] # local rows
p = comm.Get_size()
xg = numpy.zeros(m*p, dtype='d')
comm.Allgather([x, MPI.DOUBLE],
[xg, MPI.DOUBLE])
y = numpy.dot(A, xg)
return y



MPI-IO

Collective I/O with NumPy arrays:

from mpi4py import MPI
import numpy as np
amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
comm = MPI.COMM_WORLD
fh = MPI.File.Open(comm, "./datafile.contig", amode)
buffer = np.empty(10, dtype=np.int)
buffer[:] = comm.Get_rank()
offset = comm.Get_rank()*buffer.nbytes
fh.Write_at_all(offset, buffer)
fh.Close()


Non-contiguous Collective I/O with NumPy arrays and datatypes:

from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
fh = MPI.File.Open(comm, "./datafile.noncontig", amode)
item_count = 10
buffer = np.empty(item_count, dtype='i')
buffer[:] = rank
filetype = MPI.INT.Create_vector(item_count, 1, size)
filetype.Commit()
displacement = MPI.INT.Get_size()*rank
fh.Set_view(displacement, filetype=filetype)
fh.Write_all(buffer)
filetype.Free()
fh.Close()



Dynamic Process Management

Compute Pi - Master (or parent, or client) side:

#!/usr/bin/env python
from mpi4py import MPI
import numpy
import sys
comm = MPI.COMM_SELF.Spawn(sys.executable,

args=['cpi.py'],
maxprocs=5) N = numpy.array(100, 'i') comm.Bcast([N, MPI.INT], root=MPI.ROOT) PI = numpy.array(0.0, 'd') comm.Reduce(None, [PI, MPI.DOUBLE],
op=MPI.SUM, root=MPI.ROOT) print(PI) comm.Disconnect()


Compute Pi - Worker (or child, or server) side:

#!/usr/bin/env python
from mpi4py import MPI
import numpy
comm = MPI.Comm.Get_parent()
size = comm.Get_size()
rank = comm.Get_rank()
N = numpy.array(0, dtype='i')
comm.Bcast([N, MPI.INT], root=0)
h = 1.0 / N; s = 0.0
for i in range(rank, N, size):

x = h * (i + 0.5)
s += 4.0 / (1.0 + x**2) PI = numpy.array(s * h, dtype='d') comm.Reduce([PI, MPI.DOUBLE], None,
op=MPI.SUM, root=0) comm.Disconnect()



CUDA-aware MPI + Python GPU arrays

Reduce-to-all CuPy arrays:

from mpi4py import MPI
import cupy as cp
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
sendbuf = cp.arange(10, dtype='i')
recvbuf = cp.empty_like(sendbuf)
assert hasattr(sendbuf, '__cuda_array_interface__')
assert hasattr(recvbuf, '__cuda_array_interface__')
cp.cuda.get_current_stream().synchronize()
comm.Allreduce(sendbuf, recvbuf)
assert cp.allclose(recvbuf, sendbuf*size)



One-Sided Communications

Read from (write to) the entire RMA window:

import numpy as np
from mpi4py import MPI
from mpi4py.util import dtlib
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
datatype = MPI.FLOAT
np_dtype = dtlib.to_numpy_dtype(datatype)
itemsize = datatype.Get_size()
N = 10
win_size = N * itemsize if rank == 0 else 0
win = MPI.Win.Allocate(win_size, comm=comm)
buf = np.empty(N, dtype=np_dtype)
if rank == 0:

buf.fill(42)
win.Lock(rank=0)
win.Put(buf, target_rank=0)
win.Unlock(rank=0)
comm.Barrier() else:
comm.Barrier()
win.Lock(rank=0)
win.Get(buf, target_rank=0)
win.Unlock(rank=0)
assert np.all(buf == 42)


Accessing a part of the RMA window using the target argument, which is defined as (offset, count, datatype):

import numpy as np
from mpi4py import MPI
from mpi4py.util import dtlib
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
datatype = MPI.FLOAT
np_dtype = dtlib.to_numpy_dtype(datatype)
itemsize = datatype.Get_size()
N = comm.Get_size() + 1
win_size = N * itemsize if rank == 0 else 0
win = MPI.Win.Allocate(

size=win_size,
disp_unit=itemsize,
comm=comm, ) if rank == 0:
mem = np.frombuffer(win, dtype=np_dtype)
mem[:] = np.arange(len(mem), dtype=np_dtype) comm.Barrier() buf = np.zeros(3, dtype=np_dtype) target = (rank, 2, datatype) win.Lock(rank=0) win.Get(buf, target_rank=0, target=target) win.Unlock(rank=0) assert np.all(buf == [rank, rank+1, 0])



Wrapping with SWIG

C source:

/* file: helloworld.c */
void sayhello(MPI_Comm comm)
{

int size, rank;
MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);
printf("Hello, World! "
"I am process %d of %d.\n",
rank, size); }


SWIG interface file:

// file: helloworld.i
%module helloworld
%{
#include <mpi.h>
#include "helloworld.c"
}%
%include mpi4py/mpi4py.i
%mpi4py_typemap(Comm, MPI_Comm);
void sayhello(MPI_Comm comm);


Try it in the Python prompt:

>>> from mpi4py import MPI
>>> import helloworld
>>> helloworld.sayhello(MPI.COMM_WORLD)
Hello, World! I am process 0 of 1.



Wrapping with F2Py

Fortran 90 source:

! file: helloworld.f90
subroutine sayhello(comm)

use mpi
implicit none
integer :: comm, rank, size, ierr
call MPI_Comm_size(comm, size, ierr)
call MPI_Comm_rank(comm, rank, ierr)
print *, 'Hello, World! I am process ',rank,' of ',size,'.' end subroutine sayhello


Compiling example using f2py

$ f2py -c --f90exec=mpif90 helloworld.f90 -m helloworld


Try it in the Python prompt:

>>> from mpi4py import MPI
>>> import helloworld
>>> fcomm = MPI.COMM_WORLD.py2f()
>>> helloworld.sayhello(fcomm)
Hello, World! I am process 0 of 1.



MPI4PY

This is the MPI for Python package.

The Message Passing Interface (MPI) is a standardized and portable message-passing system designed to function on a wide variety of parallel computers. The MPI standard defines the syntax and semantics of library routines and allows users to write portable programs in the main scientific programming languages (Fortran, C, or C++). Since its release, the MPI specification has become the leading standard for message-passing libraries for parallel computers.

MPI for Python provides MPI bindings for the Python programming language, allowing any Python program to exploit multiple processors. This package build on the MPI specification and provides an object oriented interface which closely follows MPI-2 C++ bindings.

Runtime configuration options

This object has attributes exposing runtime configuration options that become effective at import time of the MPI module.

Attributes Summary

initialize Automatic MPI initialization at import
threads Request initialization with thread support
thread_level Level of thread support to request
finalize Automatic MPI finalization at exit
fast_reduce Use tree-based reductions for objects
recv_mprobe Use matched probes to receive objects
errors Error handling policy

Attributes Documentation

Automatic MPI initialization at import.
bool
True

SEE ALSO:

MPI4PY_RC_INITIALIZE



Request initialization with thread support.
bool
True

SEE ALSO:

MPI4PY_RC_THREADS



Level of thread support to request.
str
"multiple"
"multiple", "serialized", "funneled", "single"

SEE ALSO:

MPI4PY_RC_THREAD_LEVEL



Automatic MPI finalization at exit.
None or bool
None

SEE ALSO:

MPI4PY_RC_FINALIZE



Use tree-based reductions for objects.
bool
True

SEE ALSO:

MPI4PY_RC_FAST_REDUCE



Use matched probes to receive objects.
bool
True

SEE ALSO:

MPI4PY_RC_RECV_MPROBE



Error handling policy.
str
"exception"
"exception", "default", "fatal"

SEE ALSO:

MPI4PY_RC_ERRORS



Example

MPI for Python features automatic initialization and finalization of the MPI execution environment. By using the mpi4py.rc object, MPI initialization and finalization can be handled programatically:

import mpi4py
mpi4py.rc.initialize = False  # do not initialize MPI automatically
mpi4py.rc.finalize = False    # do not finalize MPI automatically
from mpi4py import MPI # import the 'MPI' module
MPI.Init()      # manual initialization of the MPI environment
...             # your finest code here ...
MPI.Finalize()  # manual finalization of the MPI environment


Environment variables

The following environment variables override the corresponding attributes of the mpi4py.rc and MPI.pickle objects at import time of the MPI module.

NOTE:

For variables of boolean type, accepted values are 0 and 1 (interpreted as False and True, respectively), and strings specifying a YAML boolean value (case-insensitive).


bool
True

Whether to automatically initialize MPI at import time of the mpi4py.MPI module.

SEE ALSO:

mpi4py.rc.initialize


New in version 3.1.0.


None | bool
None
None, True, False

Whether to automatically finalize MPI at exit time of the Python process.

SEE ALSO:

mpi4py.rc.finalize


New in version 3.1.0.


bool
True

Whether to initialize MPI with thread support.

SEE ALSO:

mpi4py.rc.threads


New in version 3.1.0.


"multiple"
"single", "funneled", "serialized", "multiple"

The level of required thread support.

SEE ALSO:

mpi4py.rc.thread_level


New in version 3.1.0.


bool
True

Whether to use tree-based reductions for objects.

SEE ALSO:

mpi4py.rc.fast_reduce


New in version 3.1.0.


bool
True

Whether to use matched probes to receive objects.

SEE ALSO:

mpi4py.rc.recv_mprobe



"exception"
"exception", "default", "fatal"

Controls default MPI error handling policy.

SEE ALSO:

mpi4py.rc.errors


New in version 3.1.0.


int
pickle.HIGHEST_PROTOCOL

Controls the default pickle protocol to use when communicating Python objects.

SEE ALSO:

PROTOCOL attribute of the MPI.pickle object within the MPI module.


New in version 3.1.0.


int
262144

Controls the default buffer size threshold for switching from in-band to out-of-band buffer handling when using pickle protocol version 5 or higher.

SEE ALSO:

Module mpi4py.util.pkl5.


New in version 3.1.2.


Miscellaneous functions

Support for the MPI profiling interface.
  • name (str) – Name of the profiler library to load.
  • path (sequence of str, optional) – Additional paths to search for the profiler.
  • logfile (str, optional) – Filename prefix for dumping profiler output.

None


Return a dictionary with information about MPI.
Dict[str, str]


Return the directory in the package that contains header files.

Extension modules that need to compile against mpi4py should use this function to locate the appropriate include directory. Using Python distutils (or perhaps NumPy distutils):

import mpi4py
Extension('extension_name', ...

include_dirs=[..., mpi4py.get_include()])




MPI4PY.MPI

Classes

Ancillary

Datatype([datatype]) Datatype object
Status([status]) Status object
Request([request]) Request handle
Prequest([request]) Persistent request handle
Grequest([request]) Generalized request handle
Op([op]) Operation object
Group([group]) Group of processes
Info([info]) Info object

Communication

Comm([comm]) Communicator
Intracomm([comm]) Intracommunicator
Topocomm([comm]) Topology intracommunicator
Cartcomm([comm]) Cartesian topology intracommunicator
Graphcomm([comm]) General graph topology intracommunicator
Distgraphcomm([comm]) Distributed graph topology intracommunicator
Intercomm([comm]) Intercommunicator
Message([message]) Matched message handle

One-sided operations

Win([win]) Window handle

Input/Output

File([file]) File handle

Error handling

Errhandler([errhandler]) Error handler
Exception([ierr]) Exception class

Auxiliary

Pickle([dumps, loads, protocol]) Pickle/unpickle Python objects
memory(buf) Memory buffer

Functions

Version inquiry

Get_version() Obtain the version number of the MPI standard supported by the implementation as a tuple (version, subversion)
Get_library_version() Obtain the version string of the MPI library

Initialization and finalization

Init() Initialize the MPI execution environment
Init_thread([required]) Initialize the MPI execution environment
Finalize() Terminate the MPI execution environment
Is_initialized() Indicates whether Init has been called
Is_finalized() Indicates whether Finalize has completed
Query_thread() Return the level of thread support provided by the MPI library
Is_thread_main() Indicate whether this thread called Init or Init_thread

Memory allocation

Alloc_mem(size[, info]) Allocate memory for message passing and RMA
Free_mem(mem) Free memory allocated with Alloc_mem()

Address manipulation

Get_address(location) Get the address of a location in memory
Aint_add(base, disp) Return the sum of base address and displacement
Aint_diff(addr1, addr2) Return the difference between absolute addresses

Timer

Wtick() Return the resolution of Wtime
Wtime() Return an elapsed time on the calling processor

Error handling

Get_error_class(errorcode) Convert an error code into an error class
Get_error_string(errorcode) Return the error string for a given error class or error code
Add_error_class() Add an error class to the known error classes
Add_error_code(errorclass) Add an error code to an error class
Add_error_string(errorcode, string) Associate an error string with an error class or errorcode

Dynamic process management

Open_port([info]) Return an address that can be used to establish connections between groups of MPI processes
Close_port(port_name) Close a port
Publish_name(service_name, port_name[, info]) Publish a service name
Unpublish_name(service_name, port_name[, info]) Unpublish a service name
Lookup_name(service_name[, info]) Lookup a port name given a service name

Miscellanea

Attach_buffer(buf) Attach a user-provided buffer for sending in buffered mode
Detach_buffer() Remove an existing attached buffer
Compute_dims(nnodes, dims) Return a balanced distribution of processes per coordinate direction
Get_processor_name() Obtain the name of the calling processor
Register_datarep(datarep, read_fn, write_fn, ...) Register user-defined data representations
Pcontrol(level) Control profiling

Utilities

get_vendor() Infomation about the underlying MPI implementation

Attributes

UNDEFINED int UNDEFINED
ANY_SOURCE int ANY_SOURCE
ANY_TAG int ANY_TAG
PROC_NULL int PROC_NULL
ROOT int ROOT
BOTTOM Bottom BOTTOM
IN_PLACE InPlace IN_PLACE
KEYVAL_INVALID int KEYVAL_INVALID
TAG_UB int TAG_UB
HOST int HOST
IO int IO
WTIME_IS_GLOBAL int WTIME_IS_GLOBAL
UNIVERSE_SIZE int UNIVERSE_SIZE
APPNUM int APPNUM
LASTUSEDCODE int LASTUSEDCODE
WIN_BASE int WIN_BASE
WIN_SIZE int WIN_SIZE
WIN_DISP_UNIT int WIN_DISP_UNIT
WIN_CREATE_FLAVOR int WIN_CREATE_FLAVOR
WIN_FLAVOR int WIN_FLAVOR
WIN_MODEL int WIN_MODEL
SUCCESS int SUCCESS
ERR_LASTCODE int ERR_LASTCODE
ERR_COMM int ERR_COMM
ERR_GROUP int ERR_GROUP
ERR_TYPE int ERR_TYPE
ERR_REQUEST int ERR_REQUEST
ERR_OP int ERR_OP
ERR_BUFFER int ERR_BUFFER
ERR_COUNT int ERR_COUNT
ERR_TAG int ERR_TAG
ERR_RANK int ERR_RANK
ERR_ROOT int ERR_ROOT
ERR_TRUNCATE int ERR_TRUNCATE
ERR_IN_STATUS int ERR_IN_STATUS
ERR_PENDING int ERR_PENDING
ERR_TOPOLOGY int ERR_TOPOLOGY
ERR_DIMS int ERR_DIMS
ERR_ARG int ERR_ARG
ERR_OTHER int ERR_OTHER
ERR_UNKNOWN int ERR_UNKNOWN
ERR_INTERN int ERR_INTERN
ERR_INFO int ERR_INFO
ERR_FILE int ERR_FILE
ERR_WIN int ERR_WIN
ERR_KEYVAL int ERR_KEYVAL
ERR_INFO_KEY int ERR_INFO_KEY
ERR_INFO_VALUE int ERR_INFO_VALUE
ERR_INFO_NOKEY int ERR_INFO_NOKEY
ERR_ACCESS int ERR_ACCESS
ERR_AMODE int ERR_AMODE
ERR_BAD_FILE int ERR_BAD_FILE
ERR_FILE_EXISTS int ERR_FILE_EXISTS
ERR_FILE_IN_USE int ERR_FILE_IN_USE
ERR_NO_SPACE int ERR_NO_SPACE
ERR_NO_SUCH_FILE int ERR_NO_SUCH_FILE
ERR_IO int ERR_IO
ERR_READ_ONLY int ERR_READ_ONLY
ERR_CONVERSION int ERR_CONVERSION
ERR_DUP_DATAREP int ERR_DUP_DATAREP
ERR_UNSUPPORTED_DATAREP int ERR_UNSUPPORTED_DATAREP
ERR_UNSUPPORTED_OPERATION int ERR_UNSUPPORTED_OPERATION
ERR_NAME int ERR_NAME
ERR_NO_MEM int ERR_NO_MEM
ERR_NOT_SAME int ERR_NOT_SAME
ERR_PORT int ERR_PORT
ERR_QUOTA int ERR_QUOTA
ERR_SERVICE int ERR_SERVICE
ERR_SPAWN int ERR_SPAWN
ERR_BASE int ERR_BASE
ERR_SIZE int ERR_SIZE
ERR_DISP int ERR_DISP
ERR_ASSERT int ERR_ASSERT
ERR_LOCKTYPE int ERR_LOCKTYPE
ERR_RMA_CONFLICT int ERR_RMA_CONFLICT
ERR_RMA_SYNC int ERR_RMA_SYNC
ERR_RMA_RANGE int ERR_RMA_RANGE
ERR_RMA_ATTACH int ERR_RMA_ATTACH
ERR_RMA_SHARED int ERR_RMA_SHARED
ERR_RMA_FLAVOR int ERR_RMA_FLAVOR
ORDER_C int ORDER_C
ORDER_F int ORDER_F
ORDER_FORTRAN int ORDER_FORTRAN
TYPECLASS_INTEGER int TYPECLASS_INTEGER
TYPECLASS_REAL int TYPECLASS_REAL
TYPECLASS_COMPLEX int TYPECLASS_COMPLEX
DISTRIBUTE_NONE int DISTRIBUTE_NONE
DISTRIBUTE_BLOCK int DISTRIBUTE_BLOCK
DISTRIBUTE_CYCLIC int DISTRIBUTE_CYCLIC
DISTRIBUTE_DFLT_DARG int DISTRIBUTE_DFLT_DARG
COMBINER_NAMED int COMBINER_NAMED
COMBINER_DUP int COMBINER_DUP
COMBINER_CONTIGUOUS int COMBINER_CONTIGUOUS
COMBINER_VECTOR int COMBINER_VECTOR
COMBINER_HVECTOR int COMBINER_HVECTOR
COMBINER_INDEXED int COMBINER_INDEXED
COMBINER_HINDEXED int COMBINER_HINDEXED
COMBINER_INDEXED_BLOCK int COMBINER_INDEXED_BLOCK
COMBINER_HINDEXED_BLOCK int COMBINER_HINDEXED_BLOCK
COMBINER_STRUCT int COMBINER_STRUCT
COMBINER_SUBARRAY int COMBINER_SUBARRAY
COMBINER_DARRAY int COMBINER_DARRAY
COMBINER_RESIZED int COMBINER_RESIZED
COMBINER_F90_REAL int COMBINER_F90_REAL
COMBINER_F90_COMPLEX int COMBINER_F90_COMPLEX
COMBINER_F90_INTEGER int COMBINER_F90_INTEGER
IDENT int IDENT
CONGRUENT int CONGRUENT
SIMILAR int SIMILAR
UNEQUAL int UNEQUAL
CART int CART
GRAPH int GRAPH
DIST_GRAPH int DIST_GRAPH
UNWEIGHTED int UNWEIGHTED
WEIGHTS_EMPTY int WEIGHTS_EMPTY
COMM_TYPE_SHARED int COMM_TYPE_SHARED
BSEND_OVERHEAD int BSEND_OVERHEAD
WIN_FLAVOR_CREATE int WIN_FLAVOR_CREATE
WIN_FLAVOR_ALLOCATE int WIN_FLAVOR_ALLOCATE
WIN_FLAVOR_DYNAMIC int WIN_FLAVOR_DYNAMIC
WIN_FLAVOR_SHARED int WIN_FLAVOR_SHARED
WIN_SEPARATE int WIN_SEPARATE
WIN_UNIFIED int WIN_UNIFIED
MODE_NOCHECK int MODE_NOCHECK
MODE_NOSTORE int MODE_NOSTORE
MODE_NOPUT int MODE_NOPUT
MODE_NOPRECEDE int MODE_NOPRECEDE
MODE_NOSUCCEED int MODE_NOSUCCEED
LOCK_EXCLUSIVE int LOCK_EXCLUSIVE
LOCK_SHARED int LOCK_SHARED
MODE_RDONLY int MODE_RDONLY
MODE_WRONLY int MODE_WRONLY
MODE_RDWR int MODE_RDWR
MODE_CREATE int MODE_CREATE
MODE_EXCL int MODE_EXCL
MODE_DELETE_ON_CLOSE int MODE_DELETE_ON_CLOSE
MODE_UNIQUE_OPEN int MODE_UNIQUE_OPEN
MODE_SEQUENTIAL int MODE_SEQUENTIAL
MODE_APPEND int MODE_APPEND
SEEK_SET int SEEK_SET
SEEK_CUR int SEEK_CUR
SEEK_END int SEEK_END
DISPLACEMENT_CURRENT int DISPLACEMENT_CURRENT
DISP_CUR int DISP_CUR
THREAD_SINGLE int THREAD_SINGLE
THREAD_FUNNELED int THREAD_FUNNELED
THREAD_SERIALIZED int THREAD_SERIALIZED
THREAD_MULTIPLE int THREAD_MULTIPLE
VERSION int VERSION
SUBVERSION int SUBVERSION
MAX_PROCESSOR_NAME int MAX_PROCESSOR_NAME
MAX_ERROR_STRING int MAX_ERROR_STRING
MAX_PORT_NAME int MAX_PORT_NAME
MAX_INFO_KEY int MAX_INFO_KEY
MAX_INFO_VAL int MAX_INFO_VAL
MAX_OBJECT_NAME int MAX_OBJECT_NAME
MAX_DATAREP_STRING int MAX_DATAREP_STRING
MAX_LIBRARY_VERSION_STRING int MAX_LIBRARY_VERSION_STRING
DATATYPE_NULL Datatype DATATYPE_NULL
UB Datatype UB
LB Datatype LB
PACKED Datatype PACKED
BYTE Datatype BYTE
AINT Datatype AINT
OFFSET Datatype OFFSET
COUNT Datatype COUNT
CHAR Datatype CHAR
WCHAR Datatype WCHAR
SIGNED_CHAR Datatype SIGNED_CHAR
SHORT Datatype SHORT
INT Datatype INT
LONG Datatype LONG
LONG_LONG Datatype LONG_LONG
UNSIGNED_CHAR Datatype UNSIGNED_CHAR
UNSIGNED_SHORT Datatype UNSIGNED_SHORT
UNSIGNED Datatype UNSIGNED
UNSIGNED_LONG Datatype UNSIGNED_LONG
UNSIGNED_LONG_LONG Datatype UNSIGNED_LONG_LONG
FLOAT Datatype FLOAT
DOUBLE Datatype DOUBLE
LONG_DOUBLE Datatype LONG_DOUBLE
C_BOOL Datatype C_BOOL
INT8_T Datatype INT8_T
INT16_T Datatype INT16_T
INT32_T Datatype INT32_T
INT64_T Datatype INT64_T
UINT8_T Datatype UINT8_T
UINT16_T Datatype UINT16_T
UINT32_T Datatype UINT32_T
UINT64_T Datatype UINT64_T
C_COMPLEX Datatype C_COMPLEX
C_FLOAT_COMPLEX Datatype C_FLOAT_COMPLEX
C_DOUBLE_COMPLEX Datatype C_DOUBLE_COMPLEX
C_LONG_DOUBLE_COMPLEX Datatype C_LONG_DOUBLE_COMPLEX
CXX_BOOL Datatype CXX_BOOL
CXX_FLOAT_COMPLEX Datatype CXX_FLOAT_COMPLEX
CXX_DOUBLE_COMPLEX Datatype CXX_DOUBLE_COMPLEX
CXX_LONG_DOUBLE_COMPLEX Datatype CXX_LONG_DOUBLE_COMPLEX
SHORT_INT Datatype SHORT_INT
INT_INT Datatype INT_INT
TWOINT Datatype TWOINT
LONG_INT Datatype LONG_INT
FLOAT_INT Datatype FLOAT_INT
DOUBLE_INT Datatype DOUBLE_INT
LONG_DOUBLE_INT Datatype LONG_DOUBLE_INT
CHARACTER Datatype CHARACTER
LOGICAL Datatype LOGICAL
INTEGER Datatype INTEGER
REAL Datatype REAL
DOUBLE_PRECISION Datatype DOUBLE_PRECISION
COMPLEX Datatype COMPLEX
DOUBLE_COMPLEX Datatype DOUBLE_COMPLEX
LOGICAL1 Datatype LOGICAL1
LOGICAL2 Datatype LOGICAL2
LOGICAL4 Datatype LOGICAL4
LOGICAL8 Datatype LOGICAL8
INTEGER1 Datatype INTEGER1
INTEGER2 Datatype INTEGER2
INTEGER4 Datatype INTEGER4
INTEGER8 Datatype INTEGER8
INTEGER16 Datatype INTEGER16
REAL2 Datatype REAL2
REAL4 Datatype REAL4
REAL8 Datatype REAL8
REAL16 Datatype REAL16
COMPLEX4 Datatype COMPLEX4
COMPLEX8 Datatype COMPLEX8
COMPLEX16 Datatype COMPLEX16
COMPLEX32 Datatype COMPLEX32
UNSIGNED_INT Datatype UNSIGNED_INT
SIGNED_SHORT Datatype SIGNED_SHORT
SIGNED_INT Datatype SIGNED_INT
SIGNED_LONG Datatype SIGNED_LONG
SIGNED_LONG_LONG Datatype SIGNED_LONG_LONG
BOOL Datatype BOOL
SINT8_T Datatype SINT8_T
SINT16_T Datatype SINT16_T
SINT32_T Datatype SINT32_T
SINT64_T Datatype SINT64_T
F_BOOL Datatype F_BOOL
F_INT Datatype F_INT
F_FLOAT Datatype F_FLOAT
F_DOUBLE Datatype F_DOUBLE
F_COMPLEX Datatype F_COMPLEX
F_FLOAT_COMPLEX Datatype F_FLOAT_COMPLEX
F_DOUBLE_COMPLEX Datatype F_DOUBLE_COMPLEX
REQUEST_NULL Request REQUEST_NULL
MESSAGE_NULL Message MESSAGE_NULL
MESSAGE_NO_PROC Message MESSAGE_NO_PROC
OP_NULL Op OP_NULL
MAX Op MAX
MIN Op MIN
SUM Op SUM
PROD Op PROD
LAND Op LAND
BAND Op BAND
LOR Op LOR
BOR Op BOR
LXOR Op LXOR
BXOR Op BXOR
MAXLOC Op MAXLOC
MINLOC Op MINLOC
REPLACE Op REPLACE
NO_OP Op NO_OP
GROUP_NULL Group GROUP_NULL
GROUP_EMPTY Group GROUP_EMPTY
INFO_NULL Info INFO_NULL
INFO_ENV Info INFO_ENV
ERRHANDLER_NULL Errhandler ERRHANDLER_NULL
ERRORS_RETURN Errhandler ERRORS_RETURN
ERRORS_ARE_FATAL Errhandler ERRORS_ARE_FATAL
COMM_NULL Comm COMM_NULL
COMM_SELF Intracomm COMM_SELF
COMM_WORLD Intracomm COMM_WORLD
WIN_NULL Win WIN_NULL
FILE_NULL File FILE_NULL
pickle Pickle pickle

MPI4PY.FUTURES

New in version 3.0.0.

This package provides a high-level interface for asynchronously executing callables on a pool of worker processes using MPI for inter-process communication.

concurrent.futures

The mpi4py.futures package is based on concurrent.futures from the Python standard library. More precisely, mpi4py.futures provides the MPIPoolExecutor class as a concrete implementation of the abstract class Executor. The submit() interface schedules a callable to be executed asynchronously and returns a Future object representing the execution of the callable. Future instances can be queried for the call result or exception. Sets of Future instances can be passed to the wait() and as_completed() functions.

NOTE:

The concurrent.futures package was introduced in Python 3.2. A backport targeting Python 2.7 is available on PyPI. The mpi4py.futures package uses concurrent.futures if available, either from the Python 3 standard library or the Python 2.7 backport if installed. Otherwise, mpi4py.futures uses a bundled copy of core functionality backported from Python 3.5 to work with Python 2.7.


SEE ALSO:

Documentation of the concurrent.futures standard module.



MPIPoolExecutor

The MPIPoolExecutor class uses a pool of MPI processes to execute calls asynchronously. By performing computations in separate processes, it allows to side-step the global interpreter lock but also means that only picklable objects can be executed and returned. The __main__ module must be importable by worker processes, thus MPIPoolExecutor instances may not work in the interactive interpreter.

MPIPoolExecutor takes advantage of the dynamic process management features introduced in the MPI-2 standard. In particular, the MPI.Intracomm.Spawn method of MPI.COMM_SELF is used in the master (or parent) process to spawn new worker (or child) processes running a Python interpreter. The master process uses a separate thread (one for each MPIPoolExecutor instance) to communicate back and forth with the workers. The worker processes serve the execution of tasks in the main (and only) thread until they are signaled for completion.

NOTE:

The worker processes must import the main script in order to unpickle any callable defined in the __main__ module and submitted from the master process. Furthermore, the callables may need access to other global variables. At the worker processes, mpi4py.futures executes the main script code (using the runpy module) under the __worker__ namespace to define the __main__ module. The __main__ and __worker__ modules are added to sys.modules (both at the master and worker processes) to ensure proper pickling and unpickling.


WARNING:

During the initial import phase at the workers, the main script cannot create and use new MPIPoolExecutor instances. Otherwise, each worker would attempt to spawn a new pool of workers, leading to infinite recursion. mpi4py.futures detects such recursive attempts to spawn new workers and aborts the MPI execution environment. As the main script code is run under the __worker__ namespace, the easiest way to avoid spawn recursion is using the idiom if __name__ == '__main__': ... in the main script.


An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given, its value is determined from the MPI4PY_FUTURES_MAX_WORKERS environment variable if set, or the MPI universe size if set, otherwise a single worker process is spawned. If max_workers is lower than or equal to 0, then a ValueError will be raised.

initializer is an optional callable that is called at the start of each worker process before executing any tasks; initargs is a tuple of arguments passed to the initializer. If initializer raises an exception, all pending tasks and any attempt to submit new tasks to the pool will raise a BrokenExecutor exception.

Other parameters:

  • python_exe: Path to the Python interpreter executable used to spawn worker processes, otherwise sys.executable is used.
  • python_args: list or iterable with additional command line flags to pass to the Python executable. Command line flags determined from inspection of sys.flags, sys.warnoptions and sys._xoptions in are passed unconditionally.
  • mpi_info: dict or iterable yielding (key, value) pairs. These (key, value) pairs are passed (through an MPI.Info object) to the MPI.Intracomm.Spawn call used to spawn worker processes. This mechanism allows telling the MPI runtime system where and how to start the processes. Check the documentation of the backend MPI implementation about the set of keys it interprets and the corresponding format for values.
  • globals: dict or iterable yielding (name, value) pairs to initialize the main module namespace in worker processes.
  • main: If set to False, do not import the __main__ module in worker processes. Setting main to False prevents worker processes from accessing definitions in the parent __main__ namespace.
  • path: list or iterable with paths to append to sys.path in worker processes to extend the module search path.
  • wdir: Path to set the current working directory in worker processes using os.chdir(). The initial working directory is set by the MPI implementation. Quality MPI implementations should honor a wdir info key passed through mpi_info, although such feature is not mandatory.
  • env: dict or iterable yielding (name, value) pairs with environment variables to update os.environ in worker processes. The initial environment is set by the MPI implementation. MPI implementations may allow setting the initial environment through mpi_info, however such feature is not required nor recommended by the MPI standard.

Schedule the callable, func, to be executed as func(*args, **kwargs) and returns a Future object representing the execution of the callable.

executor = MPIPoolExecutor(max_workers=1)
future = executor.submit(pow, 321, 1234)
print(future.result())



Equivalent to map(func, *iterables) except func is executed asynchronously and several calls to func may be made concurrently, out-of-order, in separate processes. The returned iterator raises a TimeoutError if __next__() is called and the result isn’t available after timeout seconds from the original call to map(). timeout can be an int or a float. If timeout is not specified or None, there is no limit to the wait time. If a call raises an exception, then that exception will be raised when its value is retrieved from the iterator. This method chops iterables into a number of chunks which it submits to the pool as separate tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive integer. For very long iterables, using a large value for chunksize can significantly improve performance compared to the default size of one. By default, the returned iterator yields results in-order, waiting for successive tasks to complete . This behavior can be changed by passing the keyword argument unordered as True, then the result iterator will yield a result as soon as any of the tasks complete.

executor = MPIPoolExecutor(max_workers=3)
for result in executor.map(pow, [2]*32, range(32)):

print(result)



Equivalent to itertools.starmap(func, iterable). Used instead of map() when argument parameters are already grouped in tuples from a single iterable (the data has been “pre-zipped”). map(func, *iterable) is equivalent to starmap(func, zip(*iterable)).

executor = MPIPoolExecutor(max_workers=3)
iterable = ((2, n) for n in range(32))
for result in executor.starmap(pow, iterable):

print(result)



Signal the executor that it should free any resources that it is using when the currently pending futures are done executing. Calls to submit() and map() made after shutdown() will raise RuntimeError.

If wait is True then this method will not return until all the pending futures are done executing and the resources associated with the executor have been freed. If wait is False then this method will return immediately and the resources associated with the executor will be freed when all pending futures are done executing. Regardless of the value of wait, the entire Python program will not exit until all pending futures are done executing.

If cancel_futures is True, this method will cancel all pending futures that the executor has not started running. Any futures that are completed or running won’t be cancelled, regardless of the value of cancel_futures.

You can avoid having to call this method explicitly if you use the with statement, which will shutdown the executor instance (waiting as if shutdown() were called with wait set to True).

import time
with MPIPoolExecutor(max_workers=1) as executor:

future = executor.submit(time.sleep, 2) assert future.done()



Signal the executor that it should allocate eagerly any required resources (in particular, MPI worker processes). If wait is True, then bootup() will not return until the executor resources are ready to process submissions. Resources are automatically allocated in the first call to submit(), thus calling bootup() explicitly is seldom needed.


If the max_workers parameter to MPIPoolExecutor is None or not given, the MPI4PY_FUTURES_MAX_WORKERS environment variable provides fallback value for the maximum number of MPI worker processes to spawn.

NOTE:

As the master process uses a separate thread to perform MPI communication with the workers, the backend MPI implementation should provide support for MPI.THREAD_MULTIPLE. However, some popular MPI implementations do not support yet concurrent MPI calls from multiple threads. Additionally, users may decide to initialize MPI with a lower level of thread support. If the level of thread support in the backend MPI is less than MPI.THREAD_MULTIPLE, mpi4py.futures will use a global lock to serialize MPI calls. If the level of thread support is less than MPI.THREAD_SERIALIZED, mpi4py.futures will emit a RuntimeWarning.


WARNING:

If the level of thread support in the backend MPI is less than MPI.THREAD_SERIALIZED (i.e, it is either MPI.THREAD_SINGLE or MPI.THREAD_FUNNELED), in theory mpi4py.futures cannot be used. Rather than raising an exception, mpi4py.futures emits a warning and takes a “cross-fingers” attitude to continue execution in the hope that serializing MPI calls with a global lock will actually work.


MPICommExecutor

Legacy MPI-1 implementations (as well as some vendor MPI-2 implementations) do not support the dynamic process management features introduced in the MPI-2 standard. Additionally, job schedulers and batch systems in supercomputing facilities may pose additional complications to applications using the MPI_Comm_spawn() routine.

With these issues in mind, mpi4py.futures supports an additonal, more traditional, SPMD-like usage pattern requiring MPI-1 calls only. Python applications are started the usual way, e.g., using the mpiexec command. Python code should make a collective call to the MPICommExecutor context manager to partition the set of MPI processes within a MPI communicator in one master processes and many workers processes. The master process gets access to an MPIPoolExecutor instance to submit tasks. Meanwhile, the worker process follow a different execution path and team-up to execute the tasks submitted from the master.

Besides alleviating the lack of dynamic process managment features in legacy MPI-1 or partial MPI-2 implementations, the MPICommExecutor context manager may be useful in classic MPI-based Python applications willing to take advantage of the simple, task-based, master/worker approach available in the mpi4py.futures package.

Context manager for MPIPoolExecutor. This context manager splits a MPI (intra)communicator comm (defaults to MPI.COMM_WORLD if not provided or None) in two disjoint sets: a single master process (with rank root in comm) and the remaining worker processes. These sets are then connected through an intercommunicator. The target of the with statement is assigned either an MPIPoolExecutor instance (at the master) or None (at the workers).

from mpi4py import MPI
from mpi4py.futures import MPICommExecutor
with MPICommExecutor(MPI.COMM_WORLD, root=0) as executor:

if executor is not None:
future = executor.submit(abs, -42)
assert future.result() == 42
answer = set(executor.map(abs, [-42, 42]))
assert answer == {42}



WARNING:

If MPICommExecutor is passed a communicator of size one (e.g., MPI.COMM_SELF), then the executor instace assigned to the target of the with statement will execute all submitted tasks in a single worker thread, thus ensuring that task execution still progress asynchronously. However, the GIL will prevent the main and worker threads from running concurrently in multicore processors. Moreover, the thread context switching may harm noticeably the performance of CPU-bound tasks. In case of I/O-bound tasks, the GIL is not usually an issue, however, as a single worker thread is used, it progress one task at a time. We advice against using MPICommExecutor with communicators of size one and suggest refactoring your code to use instead a ThreadPoolExecutor.


Command line

Recalling the issues related to the lack of support for dynamic process managment features in MPI implementations, mpi4py.futures supports an alternative usage pattern where Python code (either from scripts, modules, or zip files) is run under command line control of the mpi4py.futures package by passing -m mpi4py.futures to the python executable. The mpi4py.futures invocation should be passed a pyfile path to a script (or a zipfile/directory containing a __main__.py file). Additionally, mpi4py.futures accepts -m mod to execute a module named mod, -c cmd to execute a command string cmd, or even - to read commands from standard input (sys.stdin). Summarizing, mpi4py.futures can be invoked in the following ways:

  • $ mpiexec -n numprocs python -m mpi4py.futures pyfile [arg] ...
  • $ mpiexec -n numprocs python -m mpi4py.futures -m mod [arg] ...
  • $ mpiexec -n numprocs python -m mpi4py.futures -c cmd [arg] ...
  • $ mpiexec -n numprocs python -m mpi4py.futures - [arg] ...

Before starting the main script execution, mpi4py.futures splits MPI.COMM_WORLD in one master (the process with rank 0 in MPI.COMM_WORLD) and numprocs - 1 workers and connects them through an MPI intercommunicator. Afterwards, the master process proceeds with the execution of the user script code, which eventually creates MPIPoolExecutor instances to submit tasks. Meanwhile, the worker processes follow a different execution path to serve the master. Upon successful termination of the main script at the master, the entire MPI execution environment exists gracefully. In case of any unhandled exception in the main script, the master process calls MPI.COMM_WORLD.Abort(1) to prevent deadlocks and force termination of entire MPI execution environment.

WARNING:

Running scripts under command line control of mpi4py.futures is quite similar to executing a single-process application that spawn additional workers as required. However, there is a very important difference users should be aware of. All MPIPoolExecutor instances created at the master will share the pool of workers. Tasks submitted at the master from many different executors will be scheduled for execution in random order as soon as a worker is idle. Any executor can easily starve all the workers (e.g., by calling MPIPoolExecutor.map() with long iterables). If that ever happens, submissions from other executors will not be serviced until free workers are available.


SEE ALSO:

Documentation on Python command line interface.



Examples

The following julia.py script computes the Julia set and dumps an image to disk in binary PGM format. The code starts by importing MPIPoolExecutor from the mpi4py.futures package. Next, some global constants and functions implement the computation of the Julia set. The computations are protected with the standard if __name__ == '__main__':... idiom. The image is computed by whole scanlines submitting all these tasks at once using the map method. The result iterator yields scanlines in-order as the tasks complete. Finally, each scanline is dumped to disk.

julia.py

from mpi4py.futures import MPIPoolExecutor
x0, x1, w = -2.0, +2.0, 640*2
y0, y1, h = -1.5, +1.5, 480*2
dx = (x1 - x0) / w
dy = (y1 - y0) / h
c = complex(0, 0.65)
def julia(x, y):

z = complex(x, y)
n = 255
while abs(z) < 3 and n > 1:
z = z**2 + c
n -= 1
return n def julia_line(k):
line = bytearray(w)
y = y1 - k * dy
for j in range(w):
x = x0 + j * dx
line[j] = julia(x, y)
return line if __name__ == '__main__':
with MPIPoolExecutor() as executor:
image = executor.map(julia_line, range(h))
with open('julia.pgm', 'wb') as f:
f.write(b'P5 %d %d %d\n' % (w, h, 255))
for line in image:
f.write(line)


The recommended way to execute the script is by using the mpiexec command specifying one MPI process (master) and (optional but recommended) the desired MPI universe size, which determines the number of additional dynamically spawned processes (workers). The MPI universe size is provided either by a batch system or set by the user via command-line arguments to mpiexec or environment variables. Below we provide examples for MPICH and Open MPI implementations [1]. In all of these examples, the mpiexec command launches a single master process running the Python interpreter and executing the main script. When required, mpi4py.futures spawns the pool of 16 worker processes. The master submits tasks to the workers and waits for the results. The workers receive incoming tasks, execute them, and send back the results to the master.

When using MPICH implementation or its derivatives based on the Hydra process manager, users can set the MPI universe size via the -usize argument to mpiexec:

$ mpiexec -n 1 -usize 17 python julia.py


or, alternatively, by setting the MPIEXEC_UNIVERSE_SIZE environment variable:

$ MPIEXEC_UNIVERSE_SIZE=17 mpiexec -n 1 python julia.py


In the Open MPI implementation, the MPI universe size can be set via the -host argument to mpiexec:

$ mpiexec -n 1 -host <hostname>:17 python julia.py


Another way to specify the number of workers is to use the mpi4py.futures-specific environment variable MPI4PY_FUTURES_MAX_WORKERS:

$ MPI4PY_FUTURES_MAX_WORKERS=16 mpiexec -n 1 python julia.py


Note that in this case, the MPI universe size is ignored.

Alternatively, users may decide to execute the script in a more traditional way, that is, all the MPI processes are started at once. The user script is run under command-line control of mpi4py.futures passing the -m flag to the python executable:

$ mpiexec -n 17 python -m mpi4py.futures julia.py


As explained previously, the 17 processes are partitioned in one master and 16 workers. The master process executes the main script while the workers execute the tasks submitted by the master.

[1]
When using an MPI implementation other than MPICH or Open MPI, please check the documentation of the implementation and/or batch system for the ways to specify the desired MPI universe size.
See global interpreter lock.

MPI4PY.UTIL

New in version 3.1.0.

The mpi4py.util package collects miscellaneous utilities within the intersection of Python and MPI.

mpi4py.util.pkl5

New in version 3.1.0.

pickle protocol 5 (see PEP 574) introduced support for out-of-band buffers, allowing for more efficient handling of certain object types with large memory footprints.

MPI for Python uses the traditional in-band handling of buffers. This approach is appropriate for communicating non-buffer Python objects, or buffer-like objects with small memory footprints. For point-to-point communication, in-band buffer handling allows for the communication of a pickled stream with a single MPI message, at the expense of additional CPU and memory overhead in the pickling and unpickling steps.

The mpi4py.util.pkl5 module provides communicator wrapper classes reimplementing pickle-based point-to-point communication methods using pickle protocol 5. Handling out-of-band buffers necessarily involve multiple MPI messages, thus increasing latency and hurting performance in case of small size data. However, in case of large size data, the zero-copy savings of out-of-band buffer handling more than offset the extra latency costs. Additionally, these wrapper methods overcome the infamous 2 GiB message count limit (MPI-1 to MPI-3).

NOTE:

Support for pickle protocol 5 is available in the pickle module within the Python standard library since Python 3.8. Previous Python 3 releases can use the pickle5 backport, which is available on PyPI and can be installed with:

python -m pip install pickle5




Request.

Custom request class for nonblocking communications.

NOTE:

Request is not a subclass of mpi4py.MPI.Request


request (Iterable[MPI.Request]) –
Request

Free a communication request.


Cancel a communication request.


Non-destructive test for the completion of a request.
status (Optional[Status]) –
bool


Test for the completion of a request.
status (Optional[Status]) –
Tuple[bool, Optional[Any]]


Wait for a request to complete.
status (Optional[Status]) –
Any


Test for the completion of all requests.


Wait for all requests to complete.



Message.

Custom message class for matching probes.

NOTE:

Message is not a subclass of mpi4py.MPI.Message


message (Iterable[MPI.Message]) –
Message

Blocking receive of matched message.
status (Optional[Status]) –
Any


Nonblocking receive of matched message.
Request





Communicator.

Base communicator wrapper class.

Blocking send in standard mode.
  • obj (Any) –
  • dest (int) –
  • tag (int) –

None


Blocking send in buffered mode.
  • obj (Any) –
  • dest (int) –
  • tag (int) –

None


Blocking send in synchronous mode.
  • obj (Any) –
  • dest (int) –
  • tag (int) –

None


Nonblocking send in standard mode.
  • obj (Any) –
  • dest (int) –
  • tag (int) –

Request


Nonblocking send in buffered mode.
  • obj (Any) –
  • dest (int) –
  • tag (int) –

Request


Nonblocking send in synchronous mode.
  • obj (Any) –
  • dest (int) –
  • tag (int) –

Request


Blocking receive.
  • buf (Optional[Buffer]) –
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Any


Nonblocking receive.

WARNING:

This method cannot be supported reliably and raises RuntimeError.


  • buf (Optional[Buffer]) –
  • source (int) –
  • tag (int) –

Request


Send and receive.
  • sendobj (Any) –
  • dest (int) –
  • sendtag (int) –
  • recvbuf (Optional[Buffer]) –
  • source (int) –
  • recvtag (int) –
  • status (Optional[Status]) –

Any


Blocking test for a matched message.
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Message


Nonblocking test for a matched message.
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Optional[Message]


Broadcast.
  • obj (Any) –
  • root (int) –

Any



Intracommunicator.

Intracommunicator wrapper class.


Intercommunicator.

Intercommunicator wrapper class.


Examples

test-pkl5-1.py

import numpy as np
from mpi4py import MPI
from mpi4py.util import pkl5
comm = pkl5.Intracomm(MPI.COMM_WORLD)  # comm wrapper
size = comm.Get_size()
rank = comm.Get_rank()
dst = (rank + 1) % size
src = (rank - 1) % size
sobj = np.full(1024**3, rank, dtype='i4')  # > 4 GiB
sreq = comm.isend(sobj, dst, tag=42)
robj = comm.recv (None, src, tag=42)
sreq.Free()
assert np.min(robj) == src
assert np.max(robj) == src


test-pkl5-2.py

import numpy as np
from mpi4py import MPI
from mpi4py.util import pkl5
comm = pkl5.Intracomm(MPI.COMM_WORLD)  # comm wrapper
size = comm.Get_size()
rank = comm.Get_rank()
dst = (rank + 1) % size
src = (rank - 1) % size
sobj = np.full(1024**3, rank, dtype='i4')  # > 4 GiB
sreq = comm.isend(sobj, dst, tag=42)
status = MPI.Status()
rmsg = comm.mprobe(status=status)
assert status.Get_source() == src
assert status.Get_tag() == 42
rreq = rmsg.irecv()
robj = rreq.wait()
sreq.Free()
assert np.max(robj) == src
assert np.min(robj) == src


mpi4py.util.dtlib

New in version 3.1.0.

The mpi4py.util.dtlib module provides converter routines between NumPy and MPI datatypes.

Convert NumPy datatype to MPI datatype.
dtype (numpy.typing.DTypeLike) – NumPy dtype-like object.
Datatype


Convert MPI datatype to NumPy datatype.
datatype (Datatype) – MPI datatype.
numpy.dtype


MPI4PY.RUN

New in version 3.0.0.

At import time, mpi4py initializes the MPI execution environment calling MPI_Init_thread() and installs an exit hook to automatically call MPI_Finalize() just before the Python process terminates. Additionally, mpi4py overrides the default ERRORS_ARE_FATAL error handler in favor of ERRORS_RETURN, which allows translating MPI errors in Python exceptions. These departures from standard MPI behavior may be controversial, but are quite convenient within the highly dynamic Python programming environment. Third-party code using mpi4py can just from mpi4py import MPI and perform MPI calls without the tedious initialization/finalization handling. MPI errors, once translated automatically to Python exceptions, can be dealt with the common tryexceptfinally clauses; unhandled MPI exceptions will print a traceback which helps in locating problems in source code.

Unfortunately, the interplay of automatic MPI finalization and unhandled exceptions may lead to deadlocks. In unattended runs, these deadlocks will drain the battery of your laptop, or burn precious allocation hours in your supercomputing facility.

Consider the following snippet of Python code. Assume this code is stored in a standard Python script file and run with mpiexec in two or more processes.

from mpi4py import MPI
assert MPI.COMM_WORLD.Get_size() > 1
rank = MPI.COMM_WORLD.Get_rank()
if rank == 0:

1/0
MPI.COMM_WORLD.send(None, dest=1, tag=42) elif rank == 1:
MPI.COMM_WORLD.recv(source=0, tag=42)


Process 0 raises ZeroDivisionError exception before performing a send call to process 1. As the exception is not handled, the Python interpreter running in process 0 will proceed to exit with non-zero status. However, as mpi4py installed a finalizer hook to call MPI_Finalize() before exit, process 0 will block waiting for other processes to also enter the MPI_Finalize() call. Meanwhile, process 1 will block waiting for a message to arrive from process 0, thus never reaching to MPI_Finalize(). The whole MPI execution environment is irremediably in a deadlock state.

To alleviate this issue, mpi4py offers a simple, alternative command line execution mechanism based on using the -m flag and implemented with the runpy module. To use this features, Python code should be run passing -m mpi4py in the command line invoking the Python interpreter. In case of unhandled exceptions, the finalizer hook will call MPI_Abort() on the MPI_COMM_WORLD communicator, thus effectively aborting the MPI execution environment.

WARNING:

When a process is forced to abort, resources (e.g. open files) are not cleaned-up and any registered finalizers (either with the atexit module, the Python C/API function Py_AtExit(), or even the C standard library function atexit()) will not be executed. Thus, aborting execution is an extremely impolite way of ensuring process termination. However, MPI provides no other mechanism to recover from a deadlock state.


Interface options

The use of -m mpi4py to execute Python code on the command line resembles that of the Python interpreter.

  • mpiexec -n numprocs python -m mpi4py pyfile [arg] ...
  • mpiexec -n numprocs python -m mpi4py -m mod [arg] ...
  • mpiexec -n numprocs python -m mpi4py -c cmd [arg] ...
  • mpiexec -n numprocs python -m mpi4py - [arg] ...

<pyfile>
Execute the Python code contained in pyfile, which must be a filesystem path referring to either a Python file, a directory containing a __main__.py file, or a zipfile containing a __main__.py file.

Search sys.path for the named module mod and execute its contents.

Execute the Python code in the cmd string command.

-
Read commands from standard input (sys.stdin).

SEE ALSO:

Documentation on Python command line interface.



REFERENCE

mpi4py.MPI Message Passing Interface.

mpi4py.MPI

Message Passing Interface.

Classes

Cartcomm([comm]) Cartesian topology intracommunicator
Comm([comm]) Communicator
Datatype([datatype]) Datatype object
Distgraphcomm([comm]) Distributed graph topology intracommunicator
Errhandler([errhandler]) Error handler
File([file]) File handle
Graphcomm([comm]) General graph topology intracommunicator
Grequest([request]) Generalized request handle
Group([group]) Group of processes
Info([info]) Info object
Intercomm([comm]) Intercommunicator
Intracomm([comm]) Intracommunicator
Message([message]) Matched message handle
Op([op]) Operation object
Pickle([dumps, loads, protocol]) Pickle/unpickle Python objects
Prequest([request]) Persistent request handle
Request([request]) Request handle
Status([status]) Status object
Topocomm([comm]) Topology intracommunicator
Win([win]) Window handle
memory(buf) Memory buffer

mpi4py.MPI.Cartcomm

Bases: mpi4py.MPI.Topocomm

Cartesian topology intracommunicator

comm (Optional[Cartcomm]) –
Cartcomm

comm (Optional[Cartcomm]) –
Cartcomm


Methods Summary

Get_cart_rank(coords) Translate logical coordinates to ranks
Get_coords(rank) Translate ranks to logical coordinates
Get_dim() Return number of dimensions
Get_topo() Return information on the cartesian topology
Shift(direction, disp) Return a tuple (source, dest) of process ranks for data shifting with Comm.Sendrecv()
Sub(remain_dims) Return cartesian communicators that form lower-dimensional subgrids

Attributes Summary

coords coordinates
dim number of dimensions
dims dimensions
ndim number of dimensions
periods periodicity
topo topology information

Methods Documentation

Translate logical coordinates to ranks
coords (Sequence[int]) –
int


Translate ranks to logical coordinates
rank (int) –
List[int]


Return number of dimensions


Return information on the cartesian topology
Tuple[List[int], List[int], List[int]]


Return a tuple (source, dest) of process ranks for data shifting with Comm.Sendrecv()
  • direction (int) –
  • disp (int) –

Tuple[int, int]


Return cartesian communicators that form lower-dimensional subgrids
remain_dims (Sequence[bool]) –
Cartcomm


Attributes Documentation

coordinates

number of dimensions

dimensions

number of dimensions

periodicity

topology information


mpi4py.MPI.Comm

Bases: object

Communicator

comm (Optional[Comm]) –
Comm

comm (Optional[Comm]) –
Comm


Methods Summary

Abort([errorcode]) Terminate MPI execution environment
Allgather(sendbuf, recvbuf) Gather to All, gather data from all processes and distribute it to all other processes in a group
Allgatherv(sendbuf, recvbuf) Gather to All Vector, gather data from all processes and distribute it to all other processes in a group providing different amount of data and displacements
Allreduce(sendbuf, recvbuf[, op]) Reduce to All
Alltoall(sendbuf, recvbuf) All to All Scatter/Gather, send data from all to all processes in a group
Alltoallv(sendbuf, recvbuf) All to All Scatter/Gather Vector, send data from all to all processes in a group providing different amount of data and displacements
Alltoallw(sendbuf, recvbuf) Generalized All-to-All communication allowing different counts, displacements and datatypes for each partner
Barrier() Barrier synchronization
Bcast(buf[, root]) Broadcast a message from one process to all other processes in a group
Bsend(buf, dest[, tag]) Blocking send in buffered mode
Bsend_init(buf, dest[, tag]) Persistent request for a send in buffered mode
Call_errhandler(errorcode) Call the error handler installed on a communicator
Clone() Clone an existing communicator
Compare(comm1, comm2) Compare two communicators
Create(group) Create communicator from group
Create_group(group[, tag]) Create communicator from group
Create_keyval([copy_fn, delete_fn, nopython]) Create a new attribute key for communicators
Delete_attr(keyval) Delete attribute value associated with a key
Disconnect() Disconnect from a communicator
Dup([info]) Duplicate an existing communicator
Dup_with_info(info) Duplicate an existing communicator
Free() Free a communicator
Free_keyval(keyval) Free an attribute key for communicators
Gather(sendbuf, recvbuf[, root]) Gather together values from a group of processes
Gatherv(sendbuf, recvbuf[, root]) Gather Vector, gather data to one process from all other processes in a group providing different amount of data and displacements at the receiving sides
Get_attr(keyval) Retrieve attribute value by key
Get_errhandler() Get the error handler for a communicator
Get_group() Access the group associated with a communicator
Get_info() Return the hints for a communicator that are currently in use
Get_name() Get the print name for this communicator
Get_parent() Return the parent intercommunicator for this process
Get_rank() Return the rank of this process in a communicator
Get_size() Return the number of processes in a communicator
Get_topology() Determine the type of topology (if any) associated with a communicator
Iallgather(sendbuf, recvbuf) Nonblocking Gather to All
Iallgatherv(sendbuf, recvbuf) Nonblocking Gather to All Vector
Iallreduce(sendbuf, recvbuf[, op]) Nonblocking Reduce to All
Ialltoall(sendbuf, recvbuf) Nonblocking All to All Scatter/Gather
Ialltoallv(sendbuf, recvbuf) Nonblocking All to All Scatter/Gather Vector
Ialltoallw(sendbuf, recvbuf) Nonblocking Generalized All-to-All
Ibarrier() Nonblocking Barrier
Ibcast(buf[, root]) Nonblocking Broadcast
Ibsend(buf, dest[, tag]) Nonblocking send in buffered mode
Idup() Nonblocking duplicate an existing communicator
Igather(sendbuf, recvbuf[, root]) Nonblocking Gather
Igatherv(sendbuf, recvbuf[, root]) Nonblocking Gather Vector
Improbe([source, tag, status]) Nonblocking test for a matched message
Iprobe([source, tag, status]) Nonblocking test for a message
Irecv(buf[, source, tag]) Nonblocking receive
Ireduce(sendbuf, recvbuf[, op, root]) Nonblocking Reduce to Root
Ireduce_scatter(sendbuf, recvbuf[, ...]) Nonblocking Reduce-Scatter (vector version)
Ireduce_scatter_block(sendbuf, recvbuf[, op]) Nonblocking Reduce-Scatter Block (regular, non-vector version)
Irsend(buf, dest[, tag]) Nonblocking send in ready mode
Is_inter() Test to see if a comm is an intercommunicator
Is_intra() Test to see if a comm is an intracommunicator
Iscatter(sendbuf, recvbuf[, root]) Nonblocking Scatter
Iscatterv(sendbuf, recvbuf[, root]) Nonblocking Scatter Vector
Isend(buf, dest[, tag]) Nonblocking send
Issend(buf, dest[, tag]) Nonblocking send in synchronous mode
Join(fd) Create a intercommunicator by joining two processes connected by a socket
Mprobe([source, tag, status]) Blocking test for a matched message
Probe([source, tag, status]) Blocking test for a message
Recv(buf[, source, tag, status]) Blocking receive
Recv_init(buf[, source, tag]) Create a persistent request for a receive
Reduce(sendbuf, recvbuf[, op, root]) Reduce to Root
Reduce_scatter(sendbuf, recvbuf[, ...]) Reduce-Scatter (vector version)
Reduce_scatter_block(sendbuf, recvbuf[, op]) Reduce-Scatter Block (regular, non-vector version)
Rsend(buf, dest[, tag]) Blocking send in ready mode
Rsend_init(buf, dest[, tag]) Persistent request for a send in ready mode
Scatter(sendbuf, recvbuf[, root]) Scatter data from one process to all other processes in a group
Scatterv(sendbuf, recvbuf[, root]) Scatter Vector, scatter data from one process to all other processes in a group providing different amount of data and displacements at the sending side
Send(buf, dest[, tag]) Blocking send
Send_init(buf, dest[, tag]) Create a persistent request for a standard send
Sendrecv(sendbuf, dest[, sendtag, recvbuf, ...]) Send and receive a message
Sendrecv_replace(buf, dest[, sendtag, ...]) Send and receive a message
Set_attr(keyval, attrval) Store attribute value associated with a key
Set_errhandler(errhandler) Set the error handler for a communicator
Set_info(info) Set new values for the hints associated with a communicator
Set_name(name) Set the print name for this communicator
Split([color, key]) Split communicator by color and key
Split_type(split_type[, key, info]) Split communicator by split type
Ssend(buf, dest[, tag]) Blocking send in synchronous mode
Ssend_init(buf, dest[, tag]) Persistent request for a send in synchronous mode
allgather(sendobj) Gather to All
allreduce(sendobj[, op]) Reduce to All
alltoall(sendobj) All to All Scatter/Gather
barrier() Barrier
bcast(obj[, root]) Broadcast
bsend(obj, dest[, tag]) Send in buffered mode
f2py(arg)
gather(sendobj[, root]) Gather
ibsend(obj, dest[, tag]) Nonblocking send in buffered mode
improbe([source, tag, status]) Nonblocking test for a matched message
iprobe([source, tag, status]) Nonblocking test for a message
irecv([buf, source, tag]) Nonblocking receive
isend(obj, dest[, tag]) Nonblocking send
issend(obj, dest[, tag]) Nonblocking send in synchronous mode
mprobe([source, tag, status]) Blocking test for a matched message
probe([source, tag, status]) Blocking test for a message
py2f()
recv([buf, source, tag, status]) Receive
reduce(sendobj[, op, root]) Reduce to Root
scatter(sendobj[, root]) Scatter
send(obj, dest[, tag]) Send
sendrecv(sendobj, dest[, sendtag, recvbuf, ...]) Send and Receive
ssend(obj, dest[, tag]) Send in synchronous mode

Attributes Summary

group communicator group
info communicator info
is_inter is intercommunicator
is_intra is intracommunicator
is_topo is a topology communicator
name communicator name
rank rank of this process in communicator
size number of processes in communicator
topology communicator topology type

Methods Documentation

Terminate MPI execution environment

WARNING:

This is a direct call, use it with care!!!.


errorcode (int) –
NoReturn


Gather to All, gather data from all processes and distribute it to all other processes in a group
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpecB) –

None


Gather to All Vector, gather data from all processes and distribute it to all other processes in a group providing different amount of data and displacements
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpecV) –

None


Reduce to All
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpec) –
  • op (Op) –

None


All to All Scatter/Gather, send data from all to all processes in a group
  • sendbuf (Union[BufSpecB, InPlace]) –
  • recvbuf (BufSpecB) –

None


All to All Scatter/Gather Vector, send data from all to all processes in a group providing different amount of data and displacements
  • sendbuf (Union[BufSpecV, InPlace]) –
  • recvbuf (BufSpecV) –

None


Generalized All-to-All communication allowing different counts, displacements and datatypes for each partner
  • sendbuf (Union[BufSpecW, InPlace]) –
  • recvbuf (BufSpecW) –

None


Barrier synchronization


Broadcast a message from one process to all other processes in a group
  • buf (BufSpec) –
  • root (int) –

None


Blocking send in buffered mode
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

None


Persistent request for a send in buffered mode
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

Request


Call the error handler installed on a communicator
errorcode (int) –
None


Clone an existing communicator


Compare two communicators
  • comm1 (Comm) –
  • comm2 (Comm) –

int


Create communicator from group
group (Group) –
Comm


Create communicator from group
  • group (Group) –
  • tag (int) –

Comm


Create a new attribute key for communicators
  • copy_fn (Optional[Callable[[Comm, int, Any], Any]]) –
  • delete_fn (Optional[Callable[[Comm, int, Any], None]]) –
  • nopython (bool) –

int


Delete attribute value associated with a key
keyval (int) –
None


Disconnect from a communicator


Duplicate an existing communicator
info (Optional[Info]) –
Comm


Duplicate an existing communicator
info (Info) –
Comm


Free a communicator


Free an attribute key for communicators
keyval (int) –
int


Gather together values from a group of processes
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (Optional[BufSpecB]) –
  • root (int) –

None


Gather Vector, gather data to one process from all other processes in a group providing different amount of data and displacements at the receiving sides
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (Optional[BufSpecV]) –
  • root (int) –

None


Retrieve attribute value by key
keyval (int) –
Optional[Union[int, Any]]


Get the error handler for a communicator
Errhandler


Access the group associated with a communicator
Group


Return the hints for a communicator that are currently in use


Get the print name for this communicator


Return the parent intercommunicator for this process
Intercomm


Return the rank of this process in a communicator


Return the number of processes in a communicator


Determine the type of topology (if any) associated with a communicator


Nonblocking Gather to All
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpecB) –

Request


Nonblocking Gather to All Vector
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpecV) –

Request


Nonblocking Reduce to All
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpec) –
  • op (Op) –

Request


Nonblocking All to All Scatter/Gather
  • sendbuf (Union[BufSpecB, InPlace]) –
  • recvbuf (BufSpecB) –

Request


Nonblocking All to All Scatter/Gather Vector
  • sendbuf (Union[BufSpecV, InPlace]) –
  • recvbuf (BufSpecV) –

Request


Nonblocking Generalized All-to-All
  • sendbuf (Union[BufSpecW, InPlace]) –
  • recvbuf (BufSpecW) –

Request


Nonblocking Barrier
Request


Nonblocking Broadcast
  • buf (BufSpec) –
  • root (int) –

Request


Nonblocking send in buffered mode
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

Request


Nonblocking duplicate an existing communicator
Tuple[Comm, Request]


Nonblocking Gather
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (Optional[BufSpecB]) –
  • root (int) –

Request


Nonblocking Gather Vector
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (Optional[BufSpecV]) –
  • root (int) –

Request


Nonblocking test for a matched message
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Optional[Message]


Nonblocking test for a message
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

bool


Nonblocking receive
  • buf (BufSpec) –
  • source (int) –
  • tag (int) –

Request


Nonblocking Reduce to Root
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (Optional[BufSpec]) –
  • op (Op) –
  • root (int) –

Request


Nonblocking Reduce-Scatter (vector version)
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpec) –
  • recvcounts (Optional[Sequence[int]]) –
  • op (Op) –

Request


Nonblocking Reduce-Scatter Block (regular, non-vector version)
  • sendbuf (Union[BufSpecB, InPlace]) –
  • recvbuf (Union[BufSpec, BufSpecB]) –
  • op (Op) –

Request


Nonblocking send in ready mode
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

Request


Test to see if a comm is an intercommunicator


Test to see if a comm is an intracommunicator


Nonblocking Scatter
  • sendbuf (Optional[BufSpecB]) –
  • recvbuf (Union[BufSpec, InPlace]) –
  • root (int) –

Request


Nonblocking Scatter Vector
  • sendbuf (Optional[BufSpecV]) –
  • recvbuf (Union[BufSpec, InPlace]) –
  • root (int) –

Request


Nonblocking send
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

Request


Nonblocking send in synchronous mode
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

Request


Create a intercommunicator by joining two processes connected by a socket
fd (int) –
Intercomm


Blocking test for a matched message
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Message


Blocking test for a message

NOTE:

This function blocks until the message arrives.


  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Literal[True]


Blocking receive

NOTE:

This function blocks until the message is received


  • buf (BufSpec) –
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

None


Create a persistent request for a receive
  • buf (BufSpec) –
  • source (int) –
  • tag (int) –

Prequest


Reduce to Root
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (Optional[BufSpec]) –
  • op (Op) –
  • root (int) –

None


Reduce-Scatter (vector version)
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpec) –
  • recvcounts (Optional[Sequence[int]]) –
  • op (Op) –

None


Reduce-Scatter Block (regular, non-vector version)
  • sendbuf (Union[BufSpecB, InPlace]) –
  • recvbuf (Union[BufSpec, BufSpecB]) –
  • op (Op) –

None


Blocking send in ready mode
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

None


Persistent request for a send in ready mode
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

Request


Scatter data from one process to all other processes in a group
  • sendbuf (Optional[BufSpecB]) –
  • recvbuf (Union[BufSpec, InPlace]) –
  • root (int) –

None


Scatter Vector, scatter data from one process to all other processes in a group providing different amount of data and displacements at the sending side
  • sendbuf (Optional[BufSpecV]) –
  • recvbuf (Union[BufSpec, InPlace]) –
  • root (int) –

None


Blocking send

NOTE:

This function may block until the message is received. Whether or not Send blocks depends on several factors and is implementation dependent


  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

None


Create a persistent request for a standard send
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

Prequest


Send and receive a message

NOTE:

This function is guaranteed not to deadlock in situations where pairs of blocking sends and receives may deadlock.


CAUTION:

A common mistake when using this function is to mismatch the tags with the source and destination ranks, which can result in deadlock.


  • sendbuf (BufSpec) –
  • dest (int) –
  • sendtag (int) –
  • recvbuf (BufSpec) –
  • source (int) –
  • recvtag (int) –
  • status (Optional[Status]) –

None


Send and receive a message

NOTE:

This function is guaranteed not to deadlock in situations where pairs of blocking sends and receives may deadlock.


CAUTION:

A common mistake when using this function is to mismatch the tags with the source and destination ranks, which can result in deadlock.


  • buf (BufSpec) –
  • dest (int) –
  • sendtag (int) –
  • source (int) –
  • recvtag (int) –
  • status (Optional[Status]) –

None


Store attribute value associated with a key
  • keyval (int) –
  • attrval (Any) –

None


Set the error handler for a communicator
errhandler (Errhandler) –
None


Set new values for the hints associated with a communicator
info (Info) –
None


Set the print name for this communicator
name (str) –
None


Split communicator by color and key
  • color (int) –
  • key (int) –

Comm


Split communicator by split type
  • split_type (int) –
  • key (int) –
  • info (Info) –

Comm


Blocking send in synchronous mode
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

None


Persistent request for a send in synchronous mode
  • buf (BufSpec) –
  • dest (int) –
  • tag (int) –

Request


Gather to All
sendobj (Any) –
List[Any]


Reduce to All
  • sendobj (Any) –
  • op (Union[Op, Callable[[Any, Any], Any]]) –

Any


All to All Scatter/Gather
sendobj (Sequence[Any]) –
List[Any]


Barrier


Broadcast
  • obj (Any) –
  • root (int) –

Any


Send in buffered mode
  • obj (Any) –
  • dest (int) –
  • tag (int) –

None



Gather
  • sendobj (Any) –
  • root (int) –

Optional[List[Any]]


Nonblocking send in buffered mode
  • obj (Any) –
  • dest (int) –
  • tag (int) –

Request


Nonblocking test for a matched message
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Optional[Message]


Nonblocking test for a message
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

bool


Nonblocking receive
  • buf (Optional[Buffer]) –
  • source (int) –
  • tag (int) –

Request


Nonblocking send
  • obj (Any) –
  • dest (int) –
  • tag (int) –

Request


Nonblocking send in synchronous mode
  • obj (Any) –
  • dest (int) –
  • tag (int) –

Request


Blocking test for a matched message
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Message


Blocking test for a message
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Literal[True]



Receive
  • buf (Optional[Buffer]) –
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Any


Reduce to Root
  • sendobj (Any) –
  • op (Union[Op, Callable[[Any, Any], Any]]) –
  • root (int) –

Optional[Any]


Scatter
  • sendobj (Sequence[Any]) –
  • root (int) –

Any


Send
  • obj (Any) –
  • dest (int) –
  • tag (int) –

None


Send and Receive
  • sendobj (Any) –
  • dest (int) –
  • sendtag (int) –
  • recvbuf (Optional[Buffer]) –
  • source (int) –
  • recvtag (int) –
  • status (Optional[Status]) –

Any


Send in synchronous mode
  • obj (Any) –
  • dest (int) –
  • tag (int) –

None


Attributes Documentation

communicator group

communicator info

is intercommunicator

is intracommunicator

is a topology communicator

communicator name

rank of this process in communicator

number of processes in communicator

communicator topology type


mpi4py.MPI.Datatype

Bases: object

Datatype object

datatype (Optional[Datatype]) –
Datatype

datatype (Optional[Datatype]) –
Datatype


Methods Summary

Commit() Commit the datatype
Create_contiguous(count) Create a contiguous datatype
Create_darray(size, rank, gsizes, distribs, ...) Create a datatype representing an HPF-like distributed array on Cartesian process grids
Create_f90_complex(p, r) Return a bounded complex datatype
Create_f90_integer(r) Return a bounded integer datatype
Create_f90_real(p, r) Return a bounded real datatype
Create_hindexed(blocklengths, displacements) Create an indexed datatype with displacements in bytes
Create_hindexed_block(blocklength, displacements) Create an indexed datatype with constant-sized blocks and displacements in bytes
Create_hvector(count, blocklength, stride) Create a vector (strided) datatype
Create_indexed(blocklengths, displacements) Create an indexed datatype
Create_indexed_block(blocklength, displacements) Create an indexed datatype with constant-sized blocks
Create_keyval([copy_fn, delete_fn, nopython]) Create a new attribute key for datatypes
Create_resized(lb, extent) Create a datatype with a new lower bound and extent
Create_struct(blocklengths, displacements, ...) Create an datatype from a general set of block sizes, displacements and datatypes
Create_subarray(sizes, subsizes, starts[, order]) Create a datatype for a subarray of a regular, multidimensional array
Create_vector(count, blocklength, stride) Create a vector (strided) datatype
Delete_attr(keyval) Delete attribute value associated with a key
Dup() Duplicate a datatype
Free() Free the datatype
Free_keyval(keyval) Free an attribute key for datatypes
Get_attr(keyval) Retrieve attribute value by key
Get_contents() Retrieve the actual arguments used in the call that created a datatype
Get_envelope() Return information on the number and type of input arguments used in the call that created a datatype
Get_extent() Return lower bound and extent of datatype
Get_name() Get the print name for this datatype
Get_size() Return the number of bytes occupied by entries in the datatype
Get_true_extent() Return the true lower bound and extent of a datatype
Match_size(typeclass, size) Find a datatype matching a specified size in bytes
Pack(inbuf, outbuf, position, comm) Pack into contiguous memory according to datatype.
Pack_external(datarep, inbuf, outbuf, position) Pack into contiguous memory according to datatype, using a portable data representation (external32).
Pack_external_size(datarep, count) Return the upper bound on the amount of space (in bytes) needed to pack a message according to datatype, using a portable data representation (external32).
Pack_size(count, comm) Return the upper bound on the amount of space (in bytes) needed to pack a message according to datatype.
Set_attr(keyval, attrval) Store attribute value associated with a key
Set_name(name) Set the print name for this datatype
Unpack(inbuf, position, outbuf, comm) Unpack from contiguous memory according to datatype.
Unpack_external(datarep, inbuf, position, outbuf) Unpack from contiguous memory according to datatype, using a portable data representation (external32).
decode() Convenience method for decoding a datatype
f2py(arg)
py2f()

Attributes Summary

combiner datatype combiner
contents datatype contents
envelope datatype envelope
extent
is_named is a named datatype
is_predefined is a predefined datatype
lb lower bound
name datatype name
size
true_extent true extent
true_lb true lower bound
true_ub true upper bound
ub upper bound

Methods Documentation

Commit the datatype
Datatype


Create a contiguous datatype
count (int) –
Datatype


Create a datatype representing an HPF-like distributed array on Cartesian process grids
  • size (int) –
  • rank (int) –
  • gsizes (Sequence[int]) –
  • distribs (Sequence[int]) –
  • dargs (Sequence[int]) –
  • psizes (Sequence[int]) –
  • order (int) –

Datatype


Return a bounded complex datatype
  • p (int) –
  • r (int) –

Datatype


Return a bounded integer datatype
r (int) –
Datatype


Return a bounded real datatype
  • p (int) –
  • r (int) –

Datatype


Create an indexed datatype with displacements in bytes
  • blocklengths (Sequence[int]) –
  • displacements (Sequence[int]) –

Datatype


Create an indexed datatype with constant-sized blocks and displacements in bytes
  • blocklength (int) –
  • displacements (Sequence[int]) –

Datatype


Create a vector (strided) datatype
  • count (int) –
  • blocklength (int) –
  • stride (int) –

Datatype


Create an indexed datatype
  • blocklengths (Sequence[int]) –
  • displacements (Sequence[int]) –

Datatype


Create an indexed datatype with constant-sized blocks
  • blocklength (int) –
  • displacements (Sequence[int]) –

Datatype


Create a new attribute key for datatypes
  • copy_fn (Optional[Callable[[Datatype, int, Any], Any]]) –
  • delete_fn (Optional[Callable[[Datatype, int, Any], None]]) –
  • nopython (bool) –

int


Create a datatype with a new lower bound and extent
  • lb (int) –
  • extent (int) –

Datatype


Create an datatype from a general set of block sizes, displacements and datatypes
  • blocklengths (Sequence[int]) –
  • displacements (Sequence[int]) –
  • datatypes (Sequence[Datatype]) –

Datatype


Create a datatype for a subarray of a regular, multidimensional array
  • sizes (Sequence[int]) –
  • subsizes (Sequence[int]) –
  • starts (Sequence[int]) –
  • order (int) –

Datatype


Create a vector (strided) datatype
  • count (int) –
  • blocklength (int) –
  • stride (int) –

Datatype


Delete attribute value associated with a key
keyval (int) –
None


Duplicate a datatype
Datatype


Free the datatype


Free an attribute key for datatypes
keyval (int) –
int


Retrieve attribute value by key
keyval (int) –
Optional[Union[int, Any]]


Retrieve the actual arguments used in the call that created a datatype
Tuple[List[int], List[int], List[Datatype]]


Return information on the number and type of input arguments used in the call that created a datatype
Tuple[int, int, int, int]


Return lower bound and extent of datatype
Tuple[int, int]


Get the print name for this datatype


Return the number of bytes occupied by entries in the datatype


Return the true lower bound and extent of a datatype
Tuple[int, int]


Find a datatype matching a specified size in bytes
  • typeclass (int) –
  • size (int) –

Datatype


Pack into contiguous memory according to datatype.
  • inbuf (BufSpec) –
  • outbuf (BufSpec) –
  • position (int) –
  • comm (Comm) –

int


Pack into contiguous memory according to datatype, using a portable data representation (external32).
  • datarep (str) –
  • inbuf (BufSpec) –
  • outbuf (BufSpec) –
  • position (int) –

int


Return the upper bound on the amount of space (in bytes) needed to pack a message according to datatype, using a portable data representation (external32).
  • datarep (str) –
  • count (int) –

int


Return the upper bound on the amount of space (in bytes) needed to pack a message according to datatype.
  • count (int) –
  • comm (Comm) –

int


Store attribute value associated with a key
  • keyval (int) –
  • attrval (Any) –

None


Set the print name for this datatype
name (str) –
None


Unpack from contiguous memory according to datatype.
  • inbuf (BufSpec) –
  • position (int) –
  • outbuf (BufSpec) –
  • comm (Comm) –

int


Unpack from contiguous memory according to datatype, using a portable data representation (external32).
  • datarep (str) –
  • inbuf (BufSpec) –
  • position (int) –
  • outbuf (BufSpec) –

int


Convenience method for decoding a datatype
Tuple[Datatype, str, Dict[str, Any]]




Attributes Documentation

datatype combiner

datatype contents

datatype envelope


is a named datatype

is a predefined datatype

lower bound

datatype name


true extent

true lower bound

true upper bound

upper bound


mpi4py.MPI.Distgraphcomm

Bases: mpi4py.MPI.Topocomm

Distributed graph topology intracommunicator

comm (Optional[Distgraphcomm]) –
Distgraphcomm

comm (Optional[Distgraphcomm]) –
Distgraphcomm


Methods Summary

Get_dist_neighbors() Return adjacency information for a distributed graph topology
Get_dist_neighbors_count() Return adjacency information for a distributed graph topology

Methods Documentation

Return adjacency information for a distributed graph topology
Tuple[List[int], List[int], Optional[Tuple[List[int], List[int]]]]


Return adjacency information for a distributed graph topology



mpi4py.MPI.Errhandler

Bases: object

Error handler

errhandler (Optional[Errhandler]) –
Errhandler

errhandler (Optional[Errhandler]) –
Errhandler


Methods Summary

Free() Free an error handler
f2py(arg)
py2f()

Methods Documentation

Free an error handler


arg (int) –
Errhandler




mpi4py.MPI.File

Bases: object

File handle

file (Optional[File]) –
File

file (Optional[File]) –
File


Methods Summary

Call_errhandler(errorcode) Call the error handler installed on a file
Close() Close a file
Delete(filename[, info]) Delete a file
Get_amode() Return the file access mode
Get_atomicity() Return the atomicity mode
Get_byte_offset(offset) Return the absolute byte position in the file corresponding to 'offset' etypes relative to the current view
Get_errhandler() Get the error handler for a file
Get_group() Return the group of processes that opened the file
Get_info() Return the hints for a file that that are currently in use
Get_position() Return the current position of the individual file pointer in etype units relative to the current view
Get_position_shared() Return the current position of the shared file pointer in etype units relative to the current view
Get_size() Return the file size
Get_type_extent(datatype) Return the extent of datatype in the file
Get_view() Return the file view
Iread(buf) Nonblocking read using individual file pointer
Iread_all(buf) Nonblocking collective read using individual file pointer
Iread_at(offset, buf) Nonblocking read using explicit offset
Iread_at_all(offset, buf) Nonblocking collective read using explicit offset
Iread_shared(buf) Nonblocking read using shared file pointer
Iwrite(buf) Nonblocking write using individual file pointer
Iwrite_all(buf) Nonblocking collective write using individual file pointer
Iwrite_at(offset, buf) Nonblocking write using explicit offset
Iwrite_at_all(offset, buf) Nonblocking collective write using explicit offset
Iwrite_shared(buf) Nonblocking write using shared file pointer
Open(comm, filename[, amode, info]) Open a file
Preallocate(size) Preallocate storage space for a file
Read(buf[, status]) Read using individual file pointer
Read_all(buf[, status]) Collective read using individual file pointer
Read_all_begin(buf) Start a split collective read using individual file pointer
Read_all_end(buf[, status]) Complete a split collective read using individual file pointer
Read_at(offset, buf[, status]) Read using explicit offset
Read_at_all(offset, buf[, status]) Collective read using explicit offset
Read_at_all_begin(offset, buf) Start a split collective read using explict offset
Read_at_all_end(buf[, status]) Complete a split collective read using explict offset
Read_ordered(buf[, status]) Collective read using shared file pointer
Read_ordered_begin(buf) Start a split collective read using shared file pointer
Read_ordered_end(buf[, status]) Complete a split collective read using shared file pointer
Read_shared(buf[, status]) Read using shared file pointer
Seek(offset[, whence]) Update the individual file pointer
Seek_shared(offset[, whence]) Update the shared file pointer
Set_atomicity(flag) Set the atomicity mode
Set_errhandler(errhandler) Set the error handler for a file
Set_info(info) Set new values for the hints associated with a file
Set_size(size) Sets the file size
Set_view([disp, etype, filetype, datarep, info]) Set the file view
Sync() Causes all previous writes to be transferred to the storage device
Write(buf[, status]) Write using individual file pointer
Write_all(buf[, status]) Collective write using individual file pointer
Write_all_begin(buf) Start a split collective write using individual file pointer
Write_all_end(buf[, status]) Complete a split collective write using individual file pointer
Write_at(offset, buf[, status]) Write using explicit offset
Write_at_all(offset, buf[, status]) Collective write using explicit offset
Write_at_all_begin(offset, buf) Start a split collective write using explict offset
Write_at_all_end(buf[, status]) Complete a split collective write using explict offset
Write_ordered(buf[, status]) Collective write using shared file pointer
Write_ordered_begin(buf) Start a split collective write using shared file pointer
Write_ordered_end(buf[, status]) Complete a split collective write using shared file pointer
Write_shared(buf[, status]) Write using shared file pointer
f2py(arg)
py2f()

Attributes Summary

amode file access mode
atomicity
group file group
info file info
size file size

Methods Documentation

Call the error handler installed on a file
errorcode (int) –
None


Close a file


Delete a file
  • filename (str) –
  • info (Info) –

None


Return the file access mode


Return the atomicity mode


Return the absolute byte position in the file corresponding to ‘offset’ etypes relative to the current view
offset (int) –
int


Get the error handler for a file
Errhandler


Return the group of processes that opened the file
Group


Return the hints for a file that that are currently in use


Return the current position of the individual file pointer in etype units relative to the current view


Return the current position of the shared file pointer in etype units relative to the current view


Return the file size


Return the extent of datatype in the file
datatype (Datatype) –
int


Return the file view
Tuple[int, Datatype, Datatype, str]


Nonblocking read using individual file pointer
buf (BufSpec) –
Request


Nonblocking collective read using individual file pointer
buf (BufSpec) –
Request


Nonblocking read using explicit offset
  • offset (int) –
  • buf (BufSpec) –

Request


Nonblocking collective read using explicit offset
  • offset (int) –
  • buf (BufSpec) –

Request


Nonblocking read using shared file pointer
buf (BufSpec) –
Request


Nonblocking write using individual file pointer
buf (BufSpec) –
Request


Nonblocking collective write using individual file pointer
buf (BufSpec) –
Request


Nonblocking write using explicit offset
  • offset (int) –
  • buf (BufSpec) –

Request


Nonblocking collective write using explicit offset
  • offset (int) –
  • buf (BufSpec) –

Request


Nonblocking write using shared file pointer
buf (BufSpec) –
Request


Open a file
  • comm (Intracomm) –
  • filename (str) –
  • amode (int) –
  • info (Info) –

File


Preallocate storage space for a file
size (int) –
None


Read using individual file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Collective read using individual file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Start a split collective read using individual file pointer
buf (BufSpec) –
None


Complete a split collective read using individual file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Read using explicit offset
  • offset (int) –
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Collective read using explicit offset
  • offset (int) –
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Start a split collective read using explict offset
  • offset (int) –
  • buf (BufSpec) –

None


Complete a split collective read using explict offset
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Collective read using shared file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Start a split collective read using shared file pointer
buf (BufSpec) –
None


Complete a split collective read using shared file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Read using shared file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Update the individual file pointer
  • offset (int) –
  • whence (int) –

None


Update the shared file pointer
  • offset (int) –
  • whence (int) –

None


Set the atomicity mode
flag (bool) –
None


Set the error handler for a file
errhandler (Errhandler) –
None


Set new values for the hints associated with a file
info (Info) –
None


Sets the file size
size (int) –
None


Set the file view
  • disp (int) –
  • etype (Datatype) –
  • filetype (Optional[Datatype]) –
  • datarep (str) –
  • info (Info) –

None


Causes all previous writes to be transferred to the storage device


Write using individual file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Collective write using individual file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Start a split collective write using individual file pointer
buf (BufSpec) –
None


Complete a split collective write using individual file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Write using explicit offset
  • offset (int) –
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Collective write using explicit offset
  • offset (int) –
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Start a split collective write using explict offset
  • offset (int) –
  • buf (BufSpec) –

None


Complete a split collective write using explict offset
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Collective write using shared file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Start a split collective write using shared file pointer
buf (BufSpec) –
None


Complete a split collective write using shared file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None


Write using shared file pointer
  • buf (BufSpec) –
  • status (Optional[Status]) –

None




Attributes Documentation

file access mode


file group

file info

file size


mpi4py.MPI.Graphcomm

Bases: mpi4py.MPI.Topocomm

General graph topology intracommunicator

comm (Optional[Graphcomm]) –
Graphcomm

comm (Optional[Graphcomm]) –
Graphcomm


Methods Summary

Get_dims() Return the number of nodes and edges
Get_neighbors(rank) Return list of neighbors of a process
Get_neighbors_count(rank) Return number of neighbors of a process
Get_topo() Return index and edges

Attributes Summary

dims number of nodes and edges
edges
index
nedges number of edges
neighbors
nneighbors number of neighbors
nnodes number of nodes
topo topology information

Methods Documentation

Return the number of nodes and edges
Tuple[int, int]


Return list of neighbors of a process
rank (int) –
List[int]


Return number of neighbors of a process
rank (int) –
int


Return index and edges
Tuple[List[int], List[int]]


Attributes Documentation

number of nodes and edges



number of edges


number of neighbors

number of nodes

topology information


mpi4py.MPI.Grequest

Bases: mpi4py.MPI.Request

Generalized request handle

request (Optional[Grequest]) –
Grequest

request (Optional[Grequest]) –
Grequest


Methods Summary

Complete() Notify that a user-defined request is complete
Start(query_fn, free_fn, cancel_fn[, args, ...]) Create and return a user-defined request

Methods Documentation

Notify that a user-defined request is complete


Create and return a user-defined request
  • query_fn (Callable[..., None]) –
  • free_fn (Callable[..., None]) –
  • cancel_fn (Callable[..., None]) –
  • args (Optional[Tuple[Any]]) –
  • kargs (Optional[Dict[str, Any]]) –

Grequest



mpi4py.MPI.Group

Bases: object

Group of processes

group (Optional[Group]) –
Group

group (Optional[Group]) –
Group


Methods Summary

Compare(group1, group2) Compare two groups
Difference(group1, group2) Produce a group from the difference of two existing groups
Dup() Duplicate a group
Excl(ranks) Produce a group by reordering an existing group and taking only unlisted members
Free() Free a group
Get_rank() Return the rank of this process in a group
Get_size() Return the size of a group
Incl(ranks) Produce a group by reordering an existing group and taking only listed members
Intersection(group1, group2) Produce a group as the intersection of two existing groups
Range_excl(ranks) Create a new group by excluding ranges of processes from an existing group
Range_incl(ranks) Create a new group from ranges of of ranks in an existing group
Translate_ranks(group1, ranks1[, group2]) Translate the ranks of processes in one group to those in another group
Union(group1, group2) Produce a group by combining two existing groups
f2py(arg)
py2f()

Attributes Summary

rank rank of this process in group
size number of processes in group

Methods Documentation

Compare two groups
  • group1 (Group) –
  • group2 (Group) –

int


Produce a group from the difference of two existing groups
  • group1 (Group) –
  • group2 (Group) –

Group


Duplicate a group
Group


Produce a group by reordering an existing group and taking only unlisted members
ranks (Sequence[int]) –
Group


Free a group


Return the rank of this process in a group


Return the size of a group


Produce a group by reordering an existing group and taking only listed members
ranks (Sequence[int]) –
Group


Produce a group as the intersection of two existing groups
  • group1 (Group) –
  • group2 (Group) –

Group


Create a new group by excluding ranges of processes from an existing group
ranks (Sequence[Tuple[int, int, int]]) –
Group


Create a new group from ranges of of ranks in an existing group
ranks (Sequence[Tuple[int, int, int]]) –
Group


Translate the ranks of processes in one group to those in another group
  • group1 (Group) –
  • ranks1 (Sequence[int]) –
  • group2 (Optional[Group]) –

List[int]


Produce a group by combining two existing groups
  • group1 (Group) –
  • group2 (Group) –

Group




Attributes Documentation

rank of this process in group

number of processes in group


mpi4py.MPI.Info

Bases: object

Info object

info (Optional[Info]) –
Info

info (Optional[Info]) –
Info


Methods Summary

Create() Create a new, empty info object
Delete(key) Remove a (key, value) pair from info
Dup() Duplicate an existing info object, creating a new object, with the same (key, value) pairs and the same ordering of keys
Free() Free a info object
Get(key[, maxlen]) Retrieve the value associated with a key
Get_nkeys() Return the number of currently defined keys in info
Get_nthkey(n) Return the nth defined key in info.
Set(key, value) Add the (key, value) pair to info, and overrides the value if a value for the same key was previously set
clear() info clear
copy() info copy
f2py(arg)
get(key[, default]) info get
items() info items
keys() info keys
pop(key, *default) info pop
popitem() info popitem
py2f()
update([other]) info update
values() info values

Methods Documentation

Create a new, empty info object


Remove a (key, value) pair from info
key (str) –
None


Duplicate an existing info object, creating a new object, with the same (key, value) pairs and the same ordering of keys


Free a info object


Retrieve the value associated with a key
  • key (str) –
  • maxlen (int) –

Optional[str]


Return the number of currently defined keys in info


Return the nth defined key in info. Keys are numbered in the range [0, N) where N is the value returned by Info.Get_nkeys()
n (int) –
str


Add the (key, value) pair to info, and overrides the value if a value for the same key was previously set
  • key (str) –
  • value (str) –

None


info clear


info copy



info get
  • key (str) –
  • default (Optional[str]) –

Optional[str]


info items
List[Tuple[str, str]]


info keys
List[str]


info pop
  • key (str) –
  • default (str) –

str


info popitem
Tuple[str, str]



info update
  • other (Union[Info, Mapping[str, str], Iterable[Tuple[str, str]]]) –
  • kwds (str) –

None


info values
List[str]



mpi4py.MPI.Intercomm

Bases: mpi4py.MPI.Comm

Intercommunicator

comm (Optional[Intercomm]) –
Intercomm

comm (Optional[Intercomm]) –
Intercomm


Methods Summary

Get_remote_group() Access the remote group associated with the inter-communicator
Get_remote_size() Intercommunicator remote size
Merge([high]) Merge intercommunicator

Attributes Summary

remote_group remote group
remote_size number of remote processes

Methods Documentation

Access the remote group associated with the inter-communicator
Group


Intercommunicator remote size


Merge intercommunicator
high (bool) –
Intracomm


Attributes Documentation

remote group

number of remote processes


mpi4py.MPI.Intracomm

Bases: mpi4py.MPI.Comm

Intracommunicator

comm (Optional[Intracomm]) –
Intracomm

comm (Optional[Intracomm]) –
Intracomm


Methods Summary

Accept(port_name[, info, root]) Accept a request to form a new intercommunicator
Cart_map(dims[, periods]) Return an optimal placement for the calling process on the physical machine
Connect(port_name[, info, root]) Make a request to form a new intercommunicator
Create_cart(dims[, periods, reorder]) Create cartesian communicator
Create_dist_graph(sources, degrees, destinations) Create distributed graph communicator
Create_dist_graph_adjacent(sources, destinations) Create distributed graph communicator
Create_graph(index, edges[, reorder]) Create graph communicator
Create_intercomm(local_leader, peer_comm, ...) Create intercommunicator
Exscan(sendbuf, recvbuf[, op]) Exclusive Scan
Graph_map(index, edges) Return an optimal placement for the calling process on the physical machine
Iexscan(sendbuf, recvbuf[, op]) Inclusive Scan
Iscan(sendbuf, recvbuf[, op]) Inclusive Scan
Scan(sendbuf, recvbuf[, op]) Inclusive Scan
Spawn(command[, args, maxprocs, info, root, ...]) Spawn instances of a single MPI application
Spawn_multiple(command[, args, maxprocs, ...]) Spawn instances of multiple MPI applications
exscan(sendobj[, op]) Exclusive Scan
scan(sendobj[, op]) Inclusive Scan

Methods Documentation

Accept a request to form a new intercommunicator
  • port_name (str) –
  • info (Info) –
  • root (int) –

Intercomm


Return an optimal placement for the calling process on the physical machine
  • dims (Sequence[int]) –
  • periods (Optional[Sequence[bool]]) –

int


Make a request to form a new intercommunicator
  • port_name (str) –
  • info (Info) –
  • root (int) –

Intercomm


Create cartesian communicator
  • dims (Sequence[int]) –
  • periods (Optional[Sequence[bool]]) –
  • reorder (bool) –

Cartcomm


Create distributed graph communicator
  • sources (Sequence[int]) –
  • degrees (Sequence[int]) –
  • destinations (Sequence[int]) –
  • weights (Optional[Sequence[int]]) –
  • info (Info) –
  • reorder (bool) –

Distgraphcomm


Create distributed graph communicator
  • sources (Sequence[int]) –
  • destinations (Sequence[int]) –
  • sourceweights (Optional[Sequence[int]]) –
  • destweights (Optional[Sequence[int]]) –
  • info (Info) –
  • reorder (bool) –

Distgraphcomm


Create graph communicator
  • index (Sequence[int]) –
  • edges (Sequence[int]) –
  • reorder (bool) –

Graphcomm


Create intercommunicator
  • local_leader (int) –
  • peer_comm (Intracomm) –
  • remote_leader (int) –
  • tag (int) –

Intercomm


Exclusive Scan
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpec) –
  • op (Op) –

None


Return an optimal placement for the calling process on the physical machine
  • index (Sequence[int]) –
  • edges (Sequence[int]) –

int


Inclusive Scan
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpec) –
  • op (Op) –

Request


Inclusive Scan
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpec) –
  • op (Op) –

Request


Inclusive Scan
  • sendbuf (Union[BufSpec, InPlace]) –
  • recvbuf (BufSpec) –
  • op (Op) –

None


Spawn instances of a single MPI application
  • command (str) –
  • args (Optional[Sequence[str]]) –
  • maxprocs (int) –
  • info (Info) –
  • root (int) –
  • errcodes (Optional[list]) –

Intercomm


Spawn instances of multiple MPI applications
  • command (Sequence[str]) –
  • args (Optional[Sequence[Sequence[str]]]) –
  • maxprocs (Optional[Sequence[int]]) –
  • info (Union[Info, Sequence[Info]]) –
  • root (int) –
  • errcodes (Optional[list]) –

Intercomm


Exclusive Scan
  • sendobj (Any) –
  • op (Union[Op, Callable[[Any, Any], Any]]) –

Any


Inclusive Scan
  • sendobj (Any) –
  • op (Union[Op, Callable[[Any, Any], Any]]) –

Any



mpi4py.MPI.Message

Bases: object

Matched message handle

message (Optional[Message]) –
Message

message (Optional[Message]) –
Message


Methods Summary

Iprobe(comm[, source, tag, status]) Nonblocking test for a matched message
Irecv(buf) Nonblocking receive of matched message
Probe(comm[, source, tag, status]) Blocking test for a matched message
Recv(buf[, status]) Blocking receive of matched message
f2py(arg)
iprobe(comm[, source, tag, status]) Nonblocking test for a matched message
irecv() Nonblocking receive of matched message
probe(comm[, source, tag, status]) Blocking test for a matched message
py2f()
recv([status]) Blocking receive of matched message

Methods Documentation

Nonblocking test for a matched message
  • comm (Comm) –
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Optional[Message]


Nonblocking receive of matched message
buf (BufSpec) –
Request


Blocking test for a matched message
  • comm (Comm) –
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Message


Blocking receive of matched message
  • buf (BufSpec) –
  • status (Optional[Status]) –

None



Nonblocking test for a matched message
  • comm (Comm) –
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Optional[Message]


Nonblocking receive of matched message
Request


Blocking test for a matched message
  • comm (Comm) –
  • source (int) –
  • tag (int) –
  • status (Optional[Status]) –

Message



Blocking receive of matched message
status (Optional[Status]) –
Any



mpi4py.MPI.Op

Bases: object

Operation object

op (Optional[Op]) –
Op


Methods Summary

Create(function[, commute]) Create a user-defined operation
Free() Free the operation
Is_commutative() Query reduction operations for their commutativity
Reduce_local(inbuf, inoutbuf) Apply a reduction operator to local data
f2py(arg)
py2f()

Attributes Summary

is_commutative is commutative
is_predefined is a predefined operation

Methods Documentation

Create a user-defined operation
  • function (Callable[[Buffer, Buffer, Datatype], None]) –
  • commute (bool) –

Op


Free the operation


Query reduction operations for their commutativity


Apply a reduction operator to local data
  • inbuf (BufSpec) –
  • inoutbuf (BufSpec) –

None




Attributes Documentation

is commutative

is a predefined operation


mpi4py.MPI.Pickle

Bases: object

Pickle/unpickle Python objects

  • dumps (Optional[Callable[[Any, int], bytes]]) –
  • loads (Optional[Callable[[Buffer], Any]]) –
  • protocol (Optional[int]) –

None

__init__(dumps=None, loads=None, protocol=None)
  • dumps (Optional[Callable[[Any, int], bytes]]) –
  • loads (Optional[Callable[[Buffer], Any]]) –
  • protocol (Optional[int]) –

None


Methods Summary

dumps(obj[, buffer_callback]) Serialize object to pickle data stream.
loads(data[, buffers]) Deserialize object from pickle data stream.

Attributes Summary

PROTOCOL pickle protocol

Methods Documentation

Serialize object to pickle data stream.
  • obj (Any) –
  • buffer_callback (Optional[Callable[[Buffer], Any]]) –

bytes


Deserialize object from pickle data stream.
  • data (Buffer) –
  • buffers (Optional[Iterable[Buffer]]) –

Any


Attributes Documentation

pickle protocol


mpi4py.MPI.Prequest

Bases: mpi4py.MPI.Request

Persistent request handle

request (Optional[Prequest]) –
Prequest

request (Optional[Prequest]) –
Prequest


Methods Summary

Start() Initiate a communication with a persistent request
Startall(requests) Start a collection of persistent requests

Methods Documentation

Initiate a communication with a persistent request


Start a collection of persistent requests
requests (List[Prequest]) –
None



mpi4py.MPI.Request

Bases: object

Request handle

request (Optional[Request]) –
Request

request (Optional[Request]) –
Request


Methods Summary

Cancel() Cancel a communication request
Free() Free a communication request
Get_status([status]) Non-destructive test for the completion of a request
Test([status]) Test for the completion of a send or receive
Testall(requests[, statuses]) Test for completion of all previously initiated requests
Testany(requests[, status]) Test for completion of any previously initiated request
Testsome(requests[, statuses]) Test for completion of some previously initiated requests
Wait([status]) Wait for a send or receive to complete
Waitall(requests[, statuses]) Wait for all previously initiated requests to complete
Waitany(requests[, status]) Wait for any previously initiated request to complete
Waitsome(requests[, statuses]) Wait for some previously initiated requests to complete
cancel() Cancel a communication request
f2py(arg)
get_status([status]) Non-destructive test for the completion of a request
py2f()
test([status]) Test for the completion of a send or receive
testall(requests[, statuses]) Test for completion of all previously initiated requests
testany(requests[, status]) Test for completion of any previously initiated request
testsome(requests[, statuses]) Test for completion of some previously initiated requests
wait([status]) Wait for a send or receive to complete
waitall(requests[, statuses]) Wait for all previously initiated requests to complete
waitany(requests[, status]) Wait for any previously initiated request to complete
waitsome(requests[, statuses]) Wait for some previously initiated requests to complete

Methods Documentation

Cancel a communication request


Free a communication request


Non-destructive test for the completion of a request
status (Optional[Status]) –
bool


Test for the completion of a send or receive
status (Optional[Status]) –
bool


Test for completion of all previously initiated requests
  • requests (Sequence[Request]) –
  • statuses (Optional[List[Status]]) –

bool


Test for completion of any previously initiated request
  • requests (Sequence[Request]) –
  • status (Optional[Status]) –

Tuple[int, bool]


Test for completion of some previously initiated requests
  • requests (Sequence[Request]) –
  • statuses (Optional[List[Status]]) –

Optional[List[int]]


Wait for a send or receive to complete
status (Optional[Status]) –
Literal[True]


Wait for all previously initiated requests to complete
  • requests (Sequence[Request]) –
  • statuses (Optional[List[Status]]) –

Literal[True]


Wait for any previously initiated request to complete
  • requests (Sequence[Request]) –
  • status (Optional[Status]) –

int


Wait for some previously initiated requests to complete
  • requests (Sequence[Request]) –
  • statuses (Optional[List[Status]]) –

Optional[List[int]]


Cancel a communication request



Non-destructive test for the completion of a request
status (Optional[Status]) –
bool



Test for the completion of a send or receive
status (Optional[Status]) –
Tuple[bool, Optional[Any]]


Test for completion of all previously initiated requests
  • requests (Sequence[Request]) –
  • statuses (Optional[List[Status]]) –

Tuple[bool, Optional[List[Any]]]


Test for completion of any previously initiated request
  • requests (Sequence[Request]) –
  • status (Optional[Status]) –

Tuple[int, bool, Optional[Any]]


Test for completion of some previously initiated requests
  • requests (Sequence[Request]) –
  • statuses (Optional[List[Status]]) –

Tuple[Optional[List[int]], Optional[List[Any]]]


Wait for a send or receive to complete
status (Optional[Status]) –
Any


Wait for all previously initiated requests to complete
  • requests (Sequence[Request]) –
  • statuses (Optional[List[Status]]) –

List[Any]


Wait for any previously initiated request to complete
  • requests (Sequence[Request]) –
  • status (Optional[Status]) –

Tuple[int, Any]


Wait for some previously initiated requests to complete
  • requests (Sequence[Request]) –
  • statuses (Optional[List[Status]]) –

Tuple[Optional[List[int]], Optional[List[Any]]]



mpi4py.MPI.Status

Bases: object

Status object

status (Optional[Status]) –
Status

status (Optional[Status]) –
Status


Methods Summary

Get_count([datatype]) Get the number of top level elements
Get_elements(datatype) Get the number of basic elements in a datatype
Get_error() Get message error
Get_source() Get message source
Get_tag() Get message tag
Is_cancelled() Test to see if a request was cancelled
Set_cancelled(flag) Set the cancelled state associated with a status
Set_elements(datatype, count) Set the number of elements in a status
Set_error(error) Set message error
Set_source(source) Set message source
Set_tag(tag) Set message tag
f2py(arg)
py2f()

Attributes Summary

cancelled cancelled state
count byte count
error
source
tag

Methods Documentation

Get the number of top level elements
datatype (Datatype) –
int


Get the number of basic elements in a datatype
datatype (Datatype) –
int


Get message error


Get message source


Get message tag


Test to see if a request was cancelled


Set the cancelled state associated with a status

NOTE:

This should be only used when implementing query callback functions for generalized requests


flag (bool) –
None


Set the number of elements in a status

NOTE:

This should be only used when implementing query callback functions for generalized requests


  • datatype (Datatype) –
  • count (int) –

None


Set message error
error (int) –
None


Set message source
source (int) –
None


Set message tag
tag (int) –
None


arg (List[int]) –
Status


List[int]


Attributes Documentation

cancelled state

byte count





mpi4py.MPI.Topocomm

Bases: mpi4py.MPI.Intracomm

Topology intracommunicator

comm (Optional[Topocomm]) –
Topocomm

comm (Optional[Topocomm]) –
Topocomm


Methods Summary

Ineighbor_allgather(sendbuf, recvbuf) Nonblocking Neighbor Gather to All
Ineighbor_allgatherv(sendbuf, recvbuf) Nonblocking Neighbor Gather to All Vector
Ineighbor_alltoall(sendbuf, recvbuf) Nonblocking Neighbor All-to-All
Ineighbor_alltoallv(sendbuf, recvbuf) Nonblocking Neighbor All-to-All Vector
Ineighbor_alltoallw(sendbuf, recvbuf) Nonblocking Neighbor All-to-All Generalized
Neighbor_allgather(sendbuf, recvbuf) Neighbor Gather to All
Neighbor_allgatherv(sendbuf, recvbuf) Neighbor Gather to All Vector
Neighbor_alltoall(sendbuf, recvbuf) Neighbor All-to-All
Neighbor_alltoallv(sendbuf, recvbuf) Neighbor All-to-All Vector
Neighbor_alltoallw(sendbuf, recvbuf) Neighbor All-to-All Generalized
neighbor_allgather(sendobj) Neighbor Gather to All
neighbor_alltoall(sendobj) Neighbor All to All Scatter/Gather

Attributes Summary

degrees number of incoming and outgoing neighbors
indegree number of incoming neighbors
inedges incoming neighbors
inoutedges incoming and outgoing neighbors
outdegree number of outgoing neighbors
outedges outgoing neighbors

Methods Documentation

Nonblocking Neighbor Gather to All
  • sendbuf (BufSpec) –
  • recvbuf (BufSpecB) –

Request


Nonblocking Neighbor Gather to All Vector
  • sendbuf (BufSpec) –
  • recvbuf (BufSpecV) –

Request


Nonblocking Neighbor All-to-All
  • sendbuf (BufSpecB) –
  • recvbuf (BufSpecB) –

Request


Nonblocking Neighbor All-to-All Vector
  • sendbuf (BufSpecV) –
  • recvbuf (BufSpecV) –

Request


Nonblocking Neighbor All-to-All Generalized
  • sendbuf (BufSpecW) –
  • recvbuf (BufSpecW) –

Request


Neighbor Gather to All
  • sendbuf (BufSpec) –
  • recvbuf (BufSpecB) –

None


Neighbor Gather to All Vector
  • sendbuf (BufSpec) –
  • recvbuf (BufSpecV) –

None


Neighbor All-to-All
  • sendbuf (BufSpecB) –
  • recvbuf (BufSpecB) –

None


Neighbor All-to-All Vector
  • sendbuf (BufSpecV) –
  • recvbuf (BufSpecV) –

None


Neighbor All-to-All Generalized
  • sendbuf (BufSpecW) –
  • recvbuf (BufSpecW) –

None


Neighbor Gather to All
sendobj (Any) –
List[Any]


Neighbor All to All Scatter/Gather
sendobj (List[Any]) –
List[Any]


Attributes Documentation

number of incoming and outgoing neighbors

number of incoming neighbors

incoming neighbors

incoming and outgoing neighbors

number of outgoing neighbors

outgoing neighbors


mpi4py.MPI.Win

Bases: object

Window handle

win (Optional[Win]) –
Win


Methods Summary

Accumulate(origin, target_rank[, target, op]) Accumulate data into the target process
Allocate(size[, disp_unit, info, comm]) Create an window object for one-sided communication
Allocate_shared(size[, disp_unit, info, comm]) Create an window object for one-sided communication
Attach(memory) Attach a local memory region
Call_errhandler(errorcode) Call the error handler installed on a window
Compare_and_swap(origin, compare, result, ...) Perform one-sided atomic compare-and-swap
Complete() Completes an RMA operations begun after an Win.Start()
Create(memory[, disp_unit, info, comm]) Create an window object for one-sided communication
Create_dynamic([info, comm]) Create an window object for one-sided communication
Create_keyval([copy_fn, delete_fn, nopython]) Create a new attribute key for windows
Delete_attr(keyval) Delete attribute value associated with a key
Detach(memory) Detach a local memory region
Fence([assertion]) Perform an MPI fence synchronization on a window
Fetch_and_op(origin, result, target_rank[, ...]) Perform one-sided read-modify-write
Flush(rank) Complete all outstanding RMA operations at the given target
Flush_all() Complete all outstanding RMA operations at all targets
Flush_local(rank) Complete locally all outstanding RMA operations at the given target
Flush_local_all() Complete locally all outstanding RMA opera- tions at all targets
Free() Free a window
Free_keyval(keyval) Free an attribute key for windows
Get(origin, target_rank[, target]) Get data from a memory window on a remote process.
Get_accumulate(origin, result, target_rank) Fetch-and-accumulate data into the target process
Get_attr(keyval) Retrieve attribute value by key
Get_errhandler() Get the error handler for a window
Get_group() Return a duplicate of the group of the communicator used to create the window
Get_info() Return the hints for a windows that are currently in use
Get_name() Get the print name associated with the window
Lock(rank[, lock_type, assertion]) Begin an RMA access epoch at the target process
Lock_all([assertion]) Begin an RMA access epoch at all processes
Post(group[, assertion]) Start an RMA exposure epoch
Put(origin, target_rank[, target]) Put data into a memory window on a remote process.
Raccumulate(origin, target_rank[, target, op]) Fetch-and-accumulate data into the target process
Rget(origin, target_rank[, target]) Get data from a memory window on a remote process.
Rget_accumulate(origin, result, target_rank) Accumulate data into the target process using remote memory access.
Rput(origin, target_rank[, target]) Put data into a memory window on a remote process.
Set_attr(keyval, attrval) Store attribute value associated with a key
Set_errhandler(errhandler) Set the error handler for a window
Set_info(info) Set new values for the hints associated with a window
Set_name(name) Set the print name associated with the window
Shared_query(rank) Query the process-local address for remote memory segments created with Win.Allocate_shared()
Start(group[, assertion]) Start an RMA access epoch for MPI
Sync() Synchronize public and private copies of the given window
Test() Test whether an RMA exposure epoch has completed
Unlock(rank) Complete an RMA access epoch at the target process
Unlock_all() Complete an RMA access epoch at all processes
Wait() Complete an RMA exposure epoch begun with Win.Post()
f2py(arg)
py2f()
tomemory() Return window memory buffer

Attributes Summary

attrs window attributes
flavor window create flavor
group window group
info window info
model window memory model
name window name

Methods Documentation

Accumulate data into the target process
  • origin (BufSpec) –
  • target_rank (int) –
  • target (Optional[TargetSpec]) –
  • op (Op) –

None


Create an window object for one-sided communication
  • size (int) –
  • disp_unit (int) –
  • info (Info) –
  • comm (Intracomm) –

Win


Create an window object for one-sided communication
  • size (int) –
  • disp_unit (int) –
  • info (Info) –
  • comm (Intracomm) –

Win


Attach a local memory region
memory (Buffer) –
None


Call the error handler installed on a window
errorcode (int) –
None


Perform one-sided atomic compare-and-swap
  • origin (BufSpec) –
  • compare (BufSpec) –
  • result (BufSpec) –
  • target_rank (int) –
  • target_disp (int) –

None


Completes an RMA operations begun after an Win.Start()


Create an window object for one-sided communication
  • memory (Union[Buffer, Bottom, None]) –
  • disp_unit (int) –
  • info (Info) –
  • comm (Intracomm) –

Win


Create an window object for one-sided communication
  • info (Info) –
  • comm (Intracomm) –

Win


Create a new attribute key for windows
  • copy_fn (Optional[Callable[[Win, int, Any], Any]]) –
  • delete_fn (Optional[Callable[[Win, int, Any], None]]) –
  • nopython (bool) –

int


Delete attribute value associated with a key
keyval (int) –
None


Detach a local memory region
memory (Buffer) –
None


Perform an MPI fence synchronization on a window
assertion (int) –
None


Perform one-sided read-modify-write
  • origin (BufSpec) –
  • result (BufSpec) –
  • target_rank (int) –
  • target_disp (int) –
  • op (Op) –

None


Complete all outstanding RMA operations at the given target
rank (int) –
None


Complete all outstanding RMA operations at all targets


Complete locally all outstanding RMA operations at the given target
rank (int) –
None


Complete locally all outstanding RMA opera- tions at all targets


Free a window


Free an attribute key for windows
keyval (int) –
int


Get data from a memory window on a remote process.
  • origin (BufSpec) –
  • target_rank (int) –
  • target (Optional[TargetSpec]) –

None


Fetch-and-accumulate data into the target process
  • origin (BufSpec) –
  • result (BufSpec) –
  • target_rank (int) –
  • target (Optional[TargetSpec]) –
  • op (Op) –

None


Retrieve attribute value by key
keyval (int) –
Optional[Union[int, Any]]


Get the error handler for a window
Errhandler


Return a duplicate of the group of the communicator used to create the window
Group


Return the hints for a windows that are currently in use


Get the print name associated with the window


Begin an RMA access epoch at the target process
  • rank (int) –
  • lock_type (int) –
  • assertion (int) –

None


Begin an RMA access epoch at all processes
assertion (int) –
None


Start an RMA exposure epoch
  • group (Group) –
  • assertion (int) –

None


Put data into a memory window on a remote process.
  • origin (BufSpec) –
  • target_rank (int) –
  • target (Optional[TargetSpec]) –

None


Fetch-and-accumulate data into the target process
  • origin (BufSpec) –
  • target_rank (int) –
  • target (Optional[TargetSpec]) –
  • op (Op) –

Request


Get data from a memory window on a remote process.
  • origin (BufSpec) –
  • target_rank (int) –
  • target (Optional[TargetSpec]) –

Request


Accumulate data into the target process using remote memory access.
  • origin (BufSpec) –
  • result (BufSpec) –
  • target_rank (int) –
  • target (Optional[TargetSpec]) –
  • op (Op) –

Request


Put data into a memory window on a remote process.
  • origin (BufSpec) –
  • target_rank (int) –
  • target (Optional[TargetSpec]) –

Request


Store attribute value associated with a key
  • keyval (int) –
  • attrval (Any) –

None


Set the error handler for a window
errhandler (Errhandler) –
None


Set new values for the hints associated with a window
info (Info) –
None


Set the print name associated with the window
name (str) –
None


Query the process-local address for remote memory segments created with Win.Allocate_shared()
rank (int) –
Tuple[memory, int]


Start an RMA access epoch for MPI
  • group (Group) –
  • assertion (int) –

None


Synchronize public and private copies of the given window


Test whether an RMA exposure epoch has completed


Complete an RMA access epoch at the target process
rank (int) –
None


Complete an RMA access epoch at all processes


Complete an RMA exposure epoch begun with Win.Post()
Literal[True]




Return window memory buffer
memory


Attributes Documentation

window attributes

window create flavor

window group

window info

window memory model

window name


mpi4py.MPI.memory

Bases: object

Memory buffer

buf (Buffer) –
memory


Methods Summary

allocate(nbytes[, clear]) Memory allocation
fromaddress(address, nbytes[, readonly]) Memory from address and size in bytes
frombuffer(obj[, readonly]) Memory from buffer-like object
release() Release the underlying buffer exposed by the memory object
tobytes([order]) Return the data in the buffer as a byte string
toreadonly() Return a readonly version of the memory object

Attributes Summary

address Memory address
format A string with the format of each element
itemsize The size in bytes of each element
nbytes Memory size (in bytes)
obj The underlying object of the memory
readonly Boolean indicating whether the memory is read-only

Methods Documentation

Memory allocation
  • nbytes (int) –
  • clear (bool) –

memory


Memory from address and size in bytes
  • address (int) –
  • nbytes (int) –
  • readonly (bool) –

memory


Memory from buffer-like object
  • obj (Buffer) –
  • readonly (bool) –

memory


Release the underlying buffer exposed by the memory object


Return the data in the buffer as a byte string
order (Optional[str]) –
bytes


Return a readonly version of the memory object
memory


Attributes Documentation

Memory address

A string with the format of each element

The size in bytes of each element

Memory size (in bytes)

The underlying object of the memory

Boolean indicating whether the memory is read-only


Exceptions

Exception([ierr]) Exception class

mpi4py.MPI.Exception

Bases: RuntimeError

Exception class

ierr (int) –
Exception


Methods Summary

Get_error_class() Error class
Get_error_code() Error code
Get_error_string() Error string

Attributes Summary

error_class error class
error_code error code
error_string error string

Methods Documentation

Error class


Error code


Error string


Attributes Documentation

error class

error code

error string


Functions

Add_error_class() Add an error class to the known error classes
Add_error_code(errorclass) Add an error code to an error class
Add_error_string(errorcode, string) Associate an error string with an error class or errorcode
Aint_add(base, disp) Return the sum of base address and displacement
Aint_diff(addr1, addr2) Return the difference between absolute addresses
Alloc_mem(size[, info]) Allocate memory for message passing and RMA
Attach_buffer(buf) Attach a user-provided buffer for sending in buffered mode
Close_port(port_name) Close a port
Compute_dims(nnodes, dims) Return a balanced distribution of processes per coordinate direction
Detach_buffer() Remove an existing attached buffer
Finalize() Terminate the MPI execution environment
Free_mem(mem) Free memory allocated with Alloc_mem()
Get_address(location) Get the address of a location in memory
Get_error_class(errorcode) Convert an error code into an error class
Get_error_string(errorcode) Return the error string for a given error class or error code
Get_library_version() Obtain the version string of the MPI library
Get_processor_name() Obtain the name of the calling processor
Get_version() Obtain the version number of the MPI standard supported by the implementation as a tuple (version, subversion)
Init() Initialize the MPI execution environment
Init_thread([required]) Initialize the MPI execution environment
Is_finalized() Indicates whether Finalize has completed
Is_initialized() Indicates whether Init has been called
Is_thread_main() Indicate whether this thread called Init or Init_thread
Lookup_name(service_name[, info]) Lookup a port name given a service name
Open_port([info]) Return an address that can be used to establish connections between groups of MPI processes
Pcontrol(level) Control profiling
Publish_name(service_name, port_name[, info]) Publish a service name
Query_thread() Return the level of thread support provided by the MPI library
Register_datarep(datarep, read_fn, write_fn, ...) Register user-defined data representations
Unpublish_name(service_name, port_name[, info]) Unpublish a service name
Wtick() Return the resolution of Wtime
Wtime() Return an elapsed time on the calling processor
get_vendor() Infomation about the underlying MPI implementation

mpi4py.MPI.Add_error_class

Add an error class to the known error classes


mpi4py.MPI.Add_error_code

Add an error code to an error class
errorclass (int) –
int


mpi4py.MPI.Add_error_string

Associate an error string with an error class or errorcode
  • errorcode (int) –
  • string (str) –

None


mpi4py.MPI.Aint_add

Return the sum of base address and displacement
  • base (int) –
  • disp (int) –

int


mpi4py.MPI.Aint_diff

Return the difference between absolute addresses
  • addr1 (int) –
  • addr2 (int) –

int


mpi4py.MPI.Alloc_mem

Allocate memory for message passing and RMA
  • size (int) –
  • info (Info) –

memory


mpi4py.MPI.Attach_buffer

Attach a user-provided buffer for sending in buffered mode
buf (Buffer) –
None


mpi4py.MPI.Close_port

Close a port
port_name (str) –
None


mpi4py.MPI.Compute_dims

Return a balanced distribution of processes per coordinate direction
  • nnodes (int) –
  • dims (Union[int, Sequence[int]]) –

List[int]


mpi4py.MPI.Detach_buffer

Remove an existing attached buffer
Buffer


mpi4py.MPI.Finalize

Terminate the MPI execution environment


mpi4py.MPI.Free_mem

Free memory allocated with Alloc_mem()
mem (memory) –
None


mpi4py.MPI.Get_address

Get the address of a location in memory
location (Union[Buffer, Bottom]) –
int


mpi4py.MPI.Get_error_class

Convert an error code into an error class
errorcode (int) –
int


mpi4py.MPI.Get_error_string

Return the error string for a given error class or error code
errorcode (int) –
str


mpi4py.MPI.Get_library_version

Obtain the version string of the MPI library


mpi4py.MPI.Get_processor_name

Obtain the name of the calling processor


mpi4py.MPI.Get_version

Obtain the version number of the MPI standard supported by the implementation as a tuple (version, subversion)
Tuple[int, int]


mpi4py.MPI.Init

Initialize the MPI execution environment


mpi4py.MPI.Init_thread

Initialize the MPI execution environment
required (int) –
int


mpi4py.MPI.Is_finalized

Indicates whether Finalize has completed


mpi4py.MPI.Is_initialized

Indicates whether Init has been called


mpi4py.MPI.Is_thread_main

Indicate whether this thread called Init or Init_thread


mpi4py.MPI.Lookup_name

Lookup a port name given a service name
  • service_name (str) –
  • info (Info) –

str


mpi4py.MPI.Open_port

Return an address that can be used to establish connections between groups of MPI processes
info (Info) –
str


mpi4py.MPI.Pcontrol

Control profiling
level (int) –
None


mpi4py.MPI.Publish_name

Publish a service name
  • service_name (str) –
  • port_name (str) –
  • info (Info) –

None


mpi4py.MPI.Query_thread

Return the level of thread support provided by the MPI library


mpi4py.MPI.Register_datarep

Register user-defined data representations
  • datarep (str) –
  • read_fn (Callable[[Buffer, Datatype, int, Buffer, int], None]) –
  • write_fn (Callable[[Buffer, Datatype, int, Buffer, int], None]) –
  • extent_fn (Callable[[Datatype], int]) –

None


mpi4py.MPI.Unpublish_name

Unpublish a service name
  • service_name (str) –
  • port_name (str) –
  • info (Info) –

None


mpi4py.MPI.Wtick

Return the resolution of Wtime
float


mpi4py.MPI.Wtime

Return an elapsed time on the calling processor
float


mpi4py.MPI.get_vendor

Infomation about the underlying MPI implementation
  • a string with the name of the MPI implementation
  • an integer 3-tuple version (major, minor, micro)

Tuple[str, Tuple[int, int, int]]


Attributes

UNDEFINED int UNDEFINED
ANY_SOURCE int ANY_SOURCE
ANY_TAG int ANY_TAG
PROC_NULL int PROC_NULL
ROOT int ROOT
BOTTOM Bottom BOTTOM
IN_PLACE InPlace IN_PLACE
KEYVAL_INVALID int KEYVAL_INVALID
TAG_UB int TAG_UB
HOST int HOST
IO int IO
WTIME_IS_GLOBAL int WTIME_IS_GLOBAL
UNIVERSE_SIZE int UNIVERSE_SIZE
APPNUM int APPNUM
LASTUSEDCODE int LASTUSEDCODE
WIN_BASE int WIN_BASE
WIN_SIZE int WIN_SIZE
WIN_DISP_UNIT int WIN_DISP_UNIT
WIN_CREATE_FLAVOR int WIN_CREATE_FLAVOR
WIN_FLAVOR int WIN_FLAVOR
WIN_MODEL int WIN_MODEL
SUCCESS int SUCCESS
ERR_LASTCODE int ERR_LASTCODE
ERR_COMM int ERR_COMM
ERR_GROUP int ERR_GROUP
ERR_TYPE int ERR_TYPE
ERR_REQUEST int ERR_REQUEST
ERR_OP int ERR_OP
ERR_BUFFER int ERR_BUFFER
ERR_COUNT int ERR_COUNT
ERR_TAG int ERR_TAG
ERR_RANK int ERR_RANK
ERR_ROOT int ERR_ROOT
ERR_TRUNCATE int ERR_TRUNCATE
ERR_IN_STATUS int ERR_IN_STATUS
ERR_PENDING int ERR_PENDING
ERR_TOPOLOGY int ERR_TOPOLOGY
ERR_DIMS int ERR_DIMS
ERR_ARG int ERR_ARG
ERR_OTHER int ERR_OTHER
ERR_UNKNOWN int ERR_UNKNOWN
ERR_INTERN int ERR_INTERN
ERR_INFO int ERR_INFO
ERR_FILE int ERR_FILE
ERR_WIN int ERR_WIN
ERR_KEYVAL int ERR_KEYVAL
ERR_INFO_KEY int ERR_INFO_KEY
ERR_INFO_VALUE int ERR_INFO_VALUE
ERR_INFO_NOKEY int ERR_INFO_NOKEY
ERR_ACCESS int ERR_ACCESS
ERR_AMODE int ERR_AMODE
ERR_BAD_FILE int ERR_BAD_FILE
ERR_FILE_EXISTS int ERR_FILE_EXISTS
ERR_FILE_IN_USE int ERR_FILE_IN_USE
ERR_NO_SPACE int ERR_NO_SPACE
ERR_NO_SUCH_FILE int ERR_NO_SUCH_FILE
ERR_IO int ERR_IO
ERR_READ_ONLY int ERR_READ_ONLY
ERR_CONVERSION int ERR_CONVERSION
ERR_DUP_DATAREP int ERR_DUP_DATAREP
ERR_UNSUPPORTED_DATAREP int ERR_UNSUPPORTED_DATAREP
ERR_UNSUPPORTED_OPERATION int ERR_UNSUPPORTED_OPERATION
ERR_NAME int ERR_NAME
ERR_NO_MEM int ERR_NO_MEM
ERR_NOT_SAME int ERR_NOT_SAME
ERR_PORT int ERR_PORT
ERR_QUOTA int ERR_QUOTA
ERR_SERVICE int ERR_SERVICE
ERR_SPAWN int ERR_SPAWN
ERR_BASE int ERR_BASE
ERR_SIZE int ERR_SIZE
ERR_DISP int ERR_DISP
ERR_ASSERT int ERR_ASSERT
ERR_LOCKTYPE int ERR_LOCKTYPE
ERR_RMA_CONFLICT int ERR_RMA_CONFLICT
ERR_RMA_SYNC int ERR_RMA_SYNC
ERR_RMA_RANGE int ERR_RMA_RANGE
ERR_RMA_ATTACH int ERR_RMA_ATTACH
ERR_RMA_SHARED int ERR_RMA_SHARED
ERR_RMA_FLAVOR int ERR_RMA_FLAVOR
ORDER_C int ORDER_C
ORDER_FORTRAN int ORDER_FORTRAN
ORDER_F int ORDER_F
TYPECLASS_INTEGER int TYPECLASS_INTEGER
TYPECLASS_REAL int TYPECLASS_REAL
TYPECLASS_COMPLEX int TYPECLASS_COMPLEX
DISTRIBUTE_NONE int DISTRIBUTE_NONE
DISTRIBUTE_BLOCK int DISTRIBUTE_BLOCK
DISTRIBUTE_CYCLIC int DISTRIBUTE_CYCLIC
DISTRIBUTE_DFLT_DARG int DISTRIBUTE_DFLT_DARG
COMBINER_NAMED int COMBINER_NAMED
COMBINER_DUP int COMBINER_DUP
COMBINER_CONTIGUOUS int COMBINER_CONTIGUOUS
COMBINER_VECTOR int COMBINER_VECTOR
COMBINER_HVECTOR int COMBINER_HVECTOR
COMBINER_INDEXED int COMBINER_INDEXED
COMBINER_HINDEXED int COMBINER_HINDEXED
COMBINER_INDEXED_BLOCK int COMBINER_INDEXED_BLOCK
COMBINER_HINDEXED_BLOCK int COMBINER_HINDEXED_BLOCK
COMBINER_STRUCT int COMBINER_STRUCT
COMBINER_SUBARRAY int COMBINER_SUBARRAY
COMBINER_DARRAY int COMBINER_DARRAY
COMBINER_RESIZED int COMBINER_RESIZED
COMBINER_F90_REAL int COMBINER_F90_REAL
COMBINER_F90_COMPLEX int COMBINER_F90_COMPLEX
COMBINER_F90_INTEGER int COMBINER_F90_INTEGER
IDENT int IDENT
CONGRUENT int CONGRUENT
SIMILAR int SIMILAR
UNEQUAL int UNEQUAL
CART int CART
GRAPH int GRAPH
DIST_GRAPH int DIST_GRAPH
UNWEIGHTED int UNWEIGHTED
WEIGHTS_EMPTY int WEIGHTS_EMPTY
COMM_TYPE_SHARED int COMM_TYPE_SHARED
BSEND_OVERHEAD int BSEND_OVERHEAD
WIN_FLAVOR_CREATE int WIN_FLAVOR_CREATE
WIN_FLAVOR_ALLOCATE int WIN_FLAVOR_ALLOCATE
WIN_FLAVOR_DYNAMIC int WIN_FLAVOR_DYNAMIC
WIN_FLAVOR_SHARED int WIN_FLAVOR_SHARED
WIN_SEPARATE int WIN_SEPARATE
WIN_UNIFIED int WIN_UNIFIED
MODE_NOCHECK int MODE_NOCHECK
MODE_NOSTORE int MODE_NOSTORE
MODE_NOPUT int MODE_NOPUT
MODE_NOPRECEDE int MODE_NOPRECEDE
MODE_NOSUCCEED int MODE_NOSUCCEED
LOCK_EXCLUSIVE int LOCK_EXCLUSIVE
LOCK_SHARED int LOCK_SHARED
MODE_RDONLY int MODE_RDONLY
MODE_WRONLY int MODE_WRONLY
MODE_RDWR int MODE_RDWR
MODE_CREATE int MODE_CREATE
MODE_EXCL int MODE_EXCL
MODE_DELETE_ON_CLOSE int MODE_DELETE_ON_CLOSE
MODE_UNIQUE_OPEN int MODE_UNIQUE_OPEN
MODE_SEQUENTIAL int MODE_SEQUENTIAL
MODE_APPEND int MODE_APPEND
SEEK_SET int SEEK_SET
SEEK_CUR int SEEK_CUR
SEEK_END int SEEK_END
DISPLACEMENT_CURRENT int DISPLACEMENT_CURRENT
DISP_CUR int DISP_CUR
THREAD_SINGLE int THREAD_SINGLE
THREAD_FUNNELED int THREAD_FUNNELED
THREAD_SERIALIZED int THREAD_SERIALIZED
THREAD_MULTIPLE int THREAD_MULTIPLE
VERSION int VERSION
SUBVERSION int SUBVERSION
MAX_PROCESSOR_NAME int MAX_PROCESSOR_NAME
MAX_ERROR_STRING int MAX_ERROR_STRING
MAX_PORT_NAME int MAX_PORT_NAME
MAX_INFO_KEY int MAX_INFO_KEY
MAX_INFO_VAL int MAX_INFO_VAL
MAX_OBJECT_NAME int MAX_OBJECT_NAME
MAX_DATAREP_STRING int MAX_DATAREP_STRING
MAX_LIBRARY_VERSION_STRING int MAX_LIBRARY_VERSION_STRING
DATATYPE_NULL Datatype DATATYPE_NULL
UB Datatype UB
LB Datatype LB
PACKED Datatype PACKED
BYTE Datatype BYTE
AINT Datatype AINT
OFFSET Datatype OFFSET
COUNT Datatype COUNT
CHAR Datatype CHAR
WCHAR Datatype WCHAR
SIGNED_CHAR Datatype SIGNED_CHAR
SHORT Datatype SHORT
INT Datatype INT
LONG Datatype LONG
LONG_LONG Datatype LONG_LONG
UNSIGNED_CHAR Datatype UNSIGNED_CHAR
UNSIGNED_SHORT Datatype UNSIGNED_SHORT
UNSIGNED Datatype UNSIGNED
UNSIGNED_LONG Datatype UNSIGNED_LONG
UNSIGNED_LONG_LONG Datatype UNSIGNED_LONG_LONG
FLOAT Datatype FLOAT
DOUBLE Datatype DOUBLE
LONG_DOUBLE Datatype LONG_DOUBLE
C_BOOL Datatype C_BOOL
INT8_T Datatype INT8_T
INT16_T Datatype INT16_T
INT32_T Datatype INT32_T
INT64_T Datatype INT64_T
UINT8_T Datatype UINT8_T
UINT16_T Datatype UINT16_T
UINT32_T Datatype UINT32_T
UINT64_T Datatype UINT64_T
C_COMPLEX Datatype C_COMPLEX
C_FLOAT_COMPLEX Datatype C_FLOAT_COMPLEX
C_DOUBLE_COMPLEX Datatype C_DOUBLE_COMPLEX
C_LONG_DOUBLE_COMPLEX Datatype C_LONG_DOUBLE_COMPLEX
CXX_BOOL Datatype CXX_BOOL
CXX_FLOAT_COMPLEX Datatype CXX_FLOAT_COMPLEX
CXX_DOUBLE_COMPLEX Datatype CXX_DOUBLE_COMPLEX
CXX_LONG_DOUBLE_COMPLEX Datatype CXX_LONG_DOUBLE_COMPLEX
SHORT_INT Datatype SHORT_INT
INT_INT Datatype INT_INT
TWOINT Datatype TWOINT
LONG_INT Datatype LONG_INT
FLOAT_INT Datatype FLOAT_INT
DOUBLE_INT Datatype DOUBLE_INT
LONG_DOUBLE_INT Datatype LONG_DOUBLE_INT
CHARACTER Datatype CHARACTER
LOGICAL Datatype LOGICAL
INTEGER Datatype INTEGER
REAL Datatype REAL
DOUBLE_PRECISION Datatype DOUBLE_PRECISION
COMPLEX Datatype COMPLEX
DOUBLE_COMPLEX Datatype DOUBLE_COMPLEX
LOGICAL1 Datatype LOGICAL1
LOGICAL2 Datatype LOGICAL2
LOGICAL4 Datatype LOGICAL4
LOGICAL8 Datatype LOGICAL8
INTEGER1 Datatype INTEGER1
INTEGER2 Datatype INTEGER2
INTEGER4 Datatype INTEGER4
INTEGER8 Datatype INTEGER8
INTEGER16 Datatype INTEGER16
REAL2 Datatype REAL2
REAL4 Datatype REAL4
REAL8 Datatype REAL8
REAL16 Datatype REAL16
COMPLEX4 Datatype COMPLEX4
COMPLEX8 Datatype COMPLEX8
COMPLEX16 Datatype COMPLEX16
COMPLEX32 Datatype COMPLEX32
UNSIGNED_INT Datatype UNSIGNED_INT
SIGNED_SHORT Datatype SIGNED_SHORT
SIGNED_INT Datatype SIGNED_INT
SIGNED_LONG Datatype SIGNED_LONG
SIGNED_LONG_LONG Datatype SIGNED_LONG_LONG
BOOL Datatype BOOL
SINT8_T Datatype SINT8_T
SINT16_T Datatype SINT16_T
SINT32_T Datatype SINT32_T
SINT64_T Datatype SINT64_T
F_BOOL Datatype F_BOOL
F_INT Datatype F_INT
F_FLOAT Datatype F_FLOAT
F_DOUBLE Datatype F_DOUBLE
F_COMPLEX Datatype F_COMPLEX
F_FLOAT_COMPLEX Datatype F_FLOAT_COMPLEX
F_DOUBLE_COMPLEX Datatype F_DOUBLE_COMPLEX
REQUEST_NULL Request REQUEST_NULL
MESSAGE_NULL Message MESSAGE_NULL
MESSAGE_NO_PROC Message MESSAGE_NO_PROC
OP_NULL Op OP_NULL
MAX Op MAX
MIN Op MIN
SUM Op SUM
PROD Op PROD
LAND Op LAND
BAND Op BAND
LOR Op LOR
BOR Op BOR
LXOR Op LXOR
BXOR Op BXOR
MAXLOC Op MAXLOC
MINLOC Op MINLOC
REPLACE Op REPLACE
NO_OP Op NO_OP
GROUP_NULL Group GROUP_NULL
GROUP_EMPTY Group GROUP_EMPTY
INFO_NULL Info INFO_NULL
INFO_ENV Info INFO_ENV
ERRHANDLER_NULL Errhandler ERRHANDLER_NULL
ERRORS_RETURN Errhandler ERRORS_RETURN
ERRORS_ARE_FATAL Errhandler ERRORS_ARE_FATAL
COMM_NULL Comm COMM_NULL
COMM_SELF Intracomm COMM_SELF
COMM_WORLD Intracomm COMM_WORLD
WIN_NULL Win WIN_NULL
FILE_NULL File FILE_NULL
pickle Pickle pickle

mpi4py.MPI.UNDEFINED


mpi4py.MPI.ANY_SOURCE


mpi4py.MPI.ANY_TAG


mpi4py.MPI.PROC_NULL


mpi4py.MPI.ROOT


mpi4py.MPI.BOTTOM


mpi4py.MPI.IN_PLACE


mpi4py.MPI.KEYVAL_INVALID


mpi4py.MPI.TAG_UB


mpi4py.MPI.HOST


mpi4py.MPI.IO


mpi4py.MPI.WTIME_IS_GLOBAL


mpi4py.MPI.UNIVERSE_SIZE


mpi4py.MPI.APPNUM


mpi4py.MPI.LASTUSEDCODE


mpi4py.MPI.WIN_BASE


mpi4py.MPI.WIN_SIZE


mpi4py.MPI.WIN_DISP_UNIT


mpi4py.MPI.WIN_CREATE_FLAVOR


mpi4py.MPI.WIN_FLAVOR


mpi4py.MPI.WIN_MODEL


mpi4py.MPI.SUCCESS


mpi4py.MPI.ERR_LASTCODE


mpi4py.MPI.ERR_COMM


mpi4py.MPI.ERR_GROUP


mpi4py.MPI.ERR_TYPE


mpi4py.MPI.ERR_REQUEST


mpi4py.MPI.ERR_OP


mpi4py.MPI.ERR_BUFFER


mpi4py.MPI.ERR_COUNT


mpi4py.MPI.ERR_TAG


mpi4py.MPI.ERR_RANK


mpi4py.MPI.ERR_ROOT


mpi4py.MPI.ERR_TRUNCATE


mpi4py.MPI.ERR_IN_STATUS


mpi4py.MPI.ERR_PENDING


mpi4py.MPI.ERR_TOPOLOGY


mpi4py.MPI.ERR_DIMS


mpi4py.MPI.ERR_ARG


mpi4py.MPI.ERR_OTHER


mpi4py.MPI.ERR_UNKNOWN


mpi4py.MPI.ERR_INTERN


mpi4py.MPI.ERR_INFO


mpi4py.MPI.ERR_FILE


mpi4py.MPI.ERR_WIN


mpi4py.MPI.ERR_KEYVAL


mpi4py.MPI.ERR_INFO_KEY


mpi4py.MPI.ERR_INFO_VALUE


mpi4py.MPI.ERR_INFO_NOKEY


mpi4py.MPI.ERR_ACCESS


mpi4py.MPI.ERR_AMODE


mpi4py.MPI.ERR_BAD_FILE


mpi4py.MPI.ERR_FILE_EXISTS


mpi4py.MPI.ERR_FILE_IN_USE


mpi4py.MPI.ERR_NO_SPACE


mpi4py.MPI.ERR_NO_SUCH_FILE


mpi4py.MPI.ERR_IO


mpi4py.MPI.ERR_READ_ONLY


mpi4py.MPI.ERR_CONVERSION


mpi4py.MPI.ERR_DUP_DATAREP


mpi4py.MPI.ERR_UNSUPPORTED_DATAREP


mpi4py.MPI.ERR_UNSUPPORTED_OPERATION


mpi4py.MPI.ERR_NAME


mpi4py.MPI.ERR_NO_MEM


mpi4py.MPI.ERR_NOT_SAME


mpi4py.MPI.ERR_PORT


mpi4py.MPI.ERR_QUOTA


mpi4py.MPI.ERR_SERVICE


mpi4py.MPI.ERR_SPAWN


mpi4py.MPI.ERR_BASE


mpi4py.MPI.ERR_SIZE


mpi4py.MPI.ERR_DISP


mpi4py.MPI.ERR_ASSERT


mpi4py.MPI.ERR_LOCKTYPE


mpi4py.MPI.ERR_RMA_CONFLICT


mpi4py.MPI.ERR_RMA_SYNC


mpi4py.MPI.ERR_RMA_RANGE


mpi4py.MPI.ERR_RMA_ATTACH


mpi4py.MPI.ERR_RMA_SHARED


mpi4py.MPI.ERR_RMA_FLAVOR


mpi4py.MPI.ORDER_C


mpi4py.MPI.ORDER_FORTRAN


mpi4py.MPI.ORDER_F


mpi4py.MPI.TYPECLASS_INTEGER


mpi4py.MPI.TYPECLASS_REAL


mpi4py.MPI.TYPECLASS_COMPLEX


mpi4py.MPI.DISTRIBUTE_NONE


mpi4py.MPI.DISTRIBUTE_BLOCK


mpi4py.MPI.DISTRIBUTE_CYCLIC


mpi4py.MPI.DISTRIBUTE_DFLT_DARG


mpi4py.MPI.COMBINER_NAMED


mpi4py.MPI.COMBINER_DUP


mpi4py.MPI.COMBINER_CONTIGUOUS


mpi4py.MPI.COMBINER_VECTOR


mpi4py.MPI.COMBINER_HVECTOR


mpi4py.MPI.COMBINER_INDEXED


mpi4py.MPI.COMBINER_HINDEXED


mpi4py.MPI.COMBINER_INDEXED_BLOCK


mpi4py.MPI.COMBINER_HINDEXED_BLOCK


mpi4py.MPI.COMBINER_STRUCT


mpi4py.MPI.COMBINER_SUBARRAY


mpi4py.MPI.COMBINER_DARRAY


mpi4py.MPI.COMBINER_RESIZED


mpi4py.MPI.COMBINER_F90_REAL


mpi4py.MPI.COMBINER_F90_COMPLEX


mpi4py.MPI.COMBINER_F90_INTEGER


mpi4py.MPI.IDENT


mpi4py.MPI.CONGRUENT


mpi4py.MPI.SIMILAR


mpi4py.MPI.UNEQUAL


mpi4py.MPI.CART


mpi4py.MPI.GRAPH


mpi4py.MPI.DIST_GRAPH


mpi4py.MPI.UNWEIGHTED


mpi4py.MPI.WEIGHTS_EMPTY


mpi4py.MPI.COMM_TYPE_SHARED


mpi4py.MPI.BSEND_OVERHEAD


mpi4py.MPI.WIN_FLAVOR_CREATE


mpi4py.MPI.WIN_FLAVOR_ALLOCATE


mpi4py.MPI.WIN_FLAVOR_DYNAMIC


mpi4py.MPI.WIN_FLAVOR_SHARED


mpi4py.MPI.WIN_SEPARATE


mpi4py.MPI.WIN_UNIFIED


mpi4py.MPI.MODE_NOCHECK


mpi4py.MPI.MODE_NOSTORE


mpi4py.MPI.MODE_NOPUT


mpi4py.MPI.MODE_NOPRECEDE


mpi4py.MPI.MODE_NOSUCCEED


mpi4py.MPI.LOCK_EXCLUSIVE


mpi4py.MPI.LOCK_SHARED


mpi4py.MPI.MODE_RDONLY


mpi4py.MPI.MODE_WRONLY


mpi4py.MPI.MODE_RDWR


mpi4py.MPI.MODE_CREATE


mpi4py.MPI.MODE_EXCL


mpi4py.MPI.MODE_DELETE_ON_CLOSE


mpi4py.MPI.MODE_UNIQUE_OPEN


mpi4py.MPI.MODE_SEQUENTIAL


mpi4py.MPI.MODE_APPEND


mpi4py.MPI.SEEK_SET


mpi4py.MPI.SEEK_CUR


mpi4py.MPI.SEEK_END


mpi4py.MPI.DISPLACEMENT_CURRENT


mpi4py.MPI.DISP_CUR


mpi4py.MPI.THREAD_SINGLE


mpi4py.MPI.THREAD_FUNNELED


mpi4py.MPI.THREAD_SERIALIZED


mpi4py.MPI.THREAD_MULTIPLE


mpi4py.MPI.VERSION


mpi4py.MPI.SUBVERSION


mpi4py.MPI.MAX_PROCESSOR_NAME


mpi4py.MPI.MAX_ERROR_STRING


mpi4py.MPI.MAX_PORT_NAME


mpi4py.MPI.MAX_INFO_KEY


mpi4py.MPI.MAX_INFO_VAL


mpi4py.MPI.MAX_OBJECT_NAME


mpi4py.MPI.MAX_DATAREP_STRING


mpi4py.MPI.MAX_LIBRARY_VERSION_STRING


mpi4py.MPI.DATATYPE_NULL


mpi4py.MPI.UB


mpi4py.MPI.LB


mpi4py.MPI.PACKED


mpi4py.MPI.BYTE


mpi4py.MPI.AINT


mpi4py.MPI.OFFSET


mpi4py.MPI.COUNT


mpi4py.MPI.CHAR


mpi4py.MPI.WCHAR


mpi4py.MPI.SIGNED_CHAR


mpi4py.MPI.SHORT


mpi4py.MPI.INT


mpi4py.MPI.LONG


mpi4py.MPI.LONG_LONG


mpi4py.MPI.UNSIGNED_CHAR


mpi4py.MPI.UNSIGNED_SHORT


mpi4py.MPI.UNSIGNED


mpi4py.MPI.UNSIGNED_LONG


mpi4py.MPI.UNSIGNED_LONG_LONG


mpi4py.MPI.FLOAT


mpi4py.MPI.DOUBLE


mpi4py.MPI.LONG_DOUBLE


mpi4py.MPI.C_BOOL


mpi4py.MPI.INT8_T


mpi4py.MPI.INT16_T


mpi4py.MPI.INT32_T


mpi4py.MPI.INT64_T


mpi4py.MPI.UINT8_T


mpi4py.MPI.UINT16_T


mpi4py.MPI.UINT32_T


mpi4py.MPI.UINT64_T


mpi4py.MPI.C_COMPLEX


mpi4py.MPI.C_FLOAT_COMPLEX


mpi4py.MPI.C_DOUBLE_COMPLEX


mpi4py.MPI.C_LONG_DOUBLE_COMPLEX


mpi4py.MPI.CXX_BOOL


mpi4py.MPI.CXX_FLOAT_COMPLEX


mpi4py.MPI.CXX_DOUBLE_COMPLEX


mpi4py.MPI.CXX_LONG_DOUBLE_COMPLEX


mpi4py.MPI.SHORT_INT


mpi4py.MPI.INT_INT


mpi4py.MPI.TWOINT


mpi4py.MPI.LONG_INT


mpi4py.MPI.FLOAT_INT


mpi4py.MPI.DOUBLE_INT


mpi4py.MPI.LONG_DOUBLE_INT


mpi4py.MPI.CHARACTER


mpi4py.MPI.LOGICAL


mpi4py.MPI.INTEGER


mpi4py.MPI.REAL


mpi4py.MPI.DOUBLE_PRECISION


mpi4py.MPI.COMPLEX


mpi4py.MPI.DOUBLE_COMPLEX


mpi4py.MPI.LOGICAL1


mpi4py.MPI.LOGICAL2


mpi4py.MPI.LOGICAL4


mpi4py.MPI.LOGICAL8


mpi4py.MPI.INTEGER1


mpi4py.MPI.INTEGER2


mpi4py.MPI.INTEGER4


mpi4py.MPI.INTEGER8


mpi4py.MPI.INTEGER16


mpi4py.MPI.REAL2


mpi4py.MPI.REAL4


mpi4py.MPI.REAL8


mpi4py.MPI.REAL16


mpi4py.MPI.COMPLEX4


mpi4py.MPI.COMPLEX8


mpi4py.MPI.COMPLEX16


mpi4py.MPI.COMPLEX32


mpi4py.MPI.UNSIGNED_INT


mpi4py.MPI.SIGNED_SHORT


mpi4py.MPI.SIGNED_INT


mpi4py.MPI.SIGNED_LONG


mpi4py.MPI.SIGNED_LONG_LONG


mpi4py.MPI.BOOL


mpi4py.MPI.SINT8_T


mpi4py.MPI.SINT16_T


mpi4py.MPI.SINT32_T


mpi4py.MPI.SINT64_T


mpi4py.MPI.F_BOOL


mpi4py.MPI.F_INT


mpi4py.MPI.F_FLOAT


mpi4py.MPI.F_DOUBLE


mpi4py.MPI.F_COMPLEX


mpi4py.MPI.F_FLOAT_COMPLEX


mpi4py.MPI.F_DOUBLE_COMPLEX


mpi4py.MPI.REQUEST_NULL


mpi4py.MPI.MESSAGE_NULL


mpi4py.MPI.MESSAGE_NO_PROC


mpi4py.MPI.OP_NULL

Op OP_NULL
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.MAX

Op MAX
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.MIN

Op MIN
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.SUM

Op SUM
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.PROD

Op PROD
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.LAND

Op LAND
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.BAND

Op BAND
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.LOR

Op LOR
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.BOR

Op BOR
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.LXOR

Op LXOR
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.BXOR

Op BXOR
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.MAXLOC

Op MAXLOC
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.MINLOC

Op MINLOC
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.REPLACE

Op REPLACE
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.NO_OP

Op NO_OP
  • x (Any) –
  • y (Any) –

Any


mpi4py.MPI.GROUP_NULL


mpi4py.MPI.GROUP_EMPTY


mpi4py.MPI.INFO_NULL


mpi4py.MPI.INFO_ENV


mpi4py.MPI.ERRHANDLER_NULL


mpi4py.MPI.ERRORS_RETURN


mpi4py.MPI.ERRORS_ARE_FATAL


mpi4py.MPI.COMM_NULL


mpi4py.MPI.COMM_SELF


mpi4py.MPI.COMM_WORLD


mpi4py.MPI.WIN_NULL


mpi4py.MPI.FILE_NULL


mpi4py.MPI.pickle


CITATION

If MPI for Python been significant to a project that leads to an academic publication, please acknowledge that fact by citing the project.


INSTALLATION

Requirements

You need to have the following software properly installed in order to build MPI for Python:

A working MPI implementation, preferably supporting MPI-3 and built with shared/dynamic libraries.

NOTE:

If you want to build some MPI implementation from sources, check the instructions at building-mpi in the appendix.


Python 2.7, 3.5 or above.

NOTE:

Some MPI-1 implementations do require the actual command line arguments to be passed in MPI_Init(). In this case, you will need to use a rebuilt, MPI-enabled, Python interpreter executable. MPI for Python has some support for alleviating you from this task. Check the instructions at python-mpi in the appendix.



Using pip

If you already have a working MPI (either if you installed it from sources or by using a pre-built package from your favourite GNU/Linux distribution) and the mpicc compiler wrapper is on your search path, you can use pip:

$ python -m pip install mpi4py


NOTE:

If the mpicc compiler wrapper is not on your search path (or if it has a different name) you can use env to pass the environment variable MPICC providing the full path to the MPI compiler wrapper executable:

$ env MPICC=/path/to/mpicc python -m pip install mpi4py




WARNING:

pip keeps previouly built wheel files on its cache for future reuse. If you want to reinstall the mpi4py package using a different or updated MPI implementation, you have to either first remove the cached wheel file with:

$ python -m pip cache remove mpi4py


or ask pip to disable the cache:

$ python -m pip install --no-cache-dir mpi4py




Using distutils

The MPI for Python package is available for download at the project website generously hosted by GitHub. You can use curl or wget to get a release tarball.


After unpacking the release tarball:

$ tar -zxf mpi4py-X.Y.Z.tar.gz
$ cd mpi4py-X.Y.Z


the package is ready for building.

MPI for Python uses a standard distutils-based build system. However, some distutils commands (like build) have additional options:

Lets you specify a special location or name for the mpicc compiler wrapper.

Lets you pass a section with MPI configuration within a special configuration file.

Runs exhaustive tests for checking about missing MPI types, constants, and functions. This option should be passed in order to build MPI for Python against old MPI-1 or MPI-2 implementations, possibly providing a subset of MPI-3.

If you use a MPI implementation providing a mpicc compiler wrapper (e.g., MPICH, Open MPI), it will be used for compilation and linking. This is the preferred and easiest way of building MPI for Python.

If mpicc is located somewhere in your search path, simply run the build command:

$ python setup.py build


If mpicc is not in your search path or the compiler wrapper has a different name, you can run the build command specifying its location:

$ python setup.py build --mpicc=/where/you/have/mpicc


Alternatively, you can provide all the relevant information about your MPI implementation by editing the file called mpi.cfg. You can use the default section [mpi] or add a new, custom section, for example [other_mpi] (see the examples provided in the mpi.cfg file as a starting point to write your own section):

[mpi]
include_dirs         = /usr/local/mpi/include
libraries            = mpi
library_dirs         = /usr/local/mpi/lib
runtime_library_dirs = /usr/local/mpi/lib
[other_mpi]
include_dirs         = /opt/mpi/include ...
libraries            = mpi ...
library_dirs         = /opt/mpi/lib ...
runtime_library_dirs = /op/mpi/lib ...
...


and then run the build command, perhaps specifying you custom configuration section:

$ python setup.py build --mpi=other_mpi


After building, the package is ready for install.

If you have root privileges (either by log-in as the root user of by using sudo) and you want to install MPI for Python in your system for all users, just do:

$ python setup.py install


The previous steps will install the mpi4py package at standard location prefix/lib/pythonX.X/site-packages.

If you do not have root privileges or you want to install MPI for Python for your private use, just do:

$ python setup.py install --user


Testing

To quickly test the installation:

$ mpiexec -n 5 python -m mpi4py.bench helloworld
Hello, World! I am process 0 of 5 on localhost.
Hello, World! I am process 1 of 5 on localhost.
Hello, World! I am process 2 of 5 on localhost.
Hello, World! I am process 3 of 5 on localhost.
Hello, World! I am process 4 of 5 on localhost.


If you installed from source, issuing at the command line:

$ mpiexec -n 5 python demo/helloworld.py


or (in the case of ancient MPI-1 implementations):

$ mpirun -np 5 python `pwd`/demo/helloworld.py


will launch a five-process run of the Python interpreter and run the test script demo/helloworld.py from the source distribution.

You can also run all the unittest scripts:

$ mpiexec -n 5 python test/runtests.py


or, if you have nose unit testing framework installed:

$ mpiexec -n 5 nosetests -w test


or, if you have py.test unit testing framework installed:

$ mpiexec -n 5 py.test test/


APPENDIX

MPI-enabled Python interpreter

WARNING:

These days it is no longer required to use the MPI-enabled Python interpreter in most cases, and, therefore, it is not built by default anymore because it is too difficult to reliably build a Python interpreter across different distributions. If you know that you still really need it, see below on how to use the build_exe and install_exe commands.




Some MPI-1 implementations (notably, MPICH 1) do require the actual command line arguments to be passed at the time MPI_Init() is called. In this case, you will need to use a re-built, MPI-enabled, Python interpreter binary executable. A basic implementation (targeting Python 2.X) of what is required is shown below:

#include <Python.h>
#include <mpi.h>
int main(int argc, char *argv[])
{

int status, flag;
MPI_Init(&argc, &argv);
status = Py_Main(argc, argv);
MPI_Finalized(&flag);
if (!flag) MPI_Finalize();
return status; }


The source code above is straightforward; compiling it should also be. However, the linking step is more tricky: special flags have to be passed to the linker depending on your platform. In order to alleviate you for such low-level details, MPI for Python provides some pure-distutils based support to build and install an MPI-enabled Python interpreter executable:

$ cd mpi4py-X.X.X
$ python setup.py build_exe [--mpi=<name>|--mpicc=/path/to/mpicc]
$ [sudo] python setup.py install_exe [--install-dir=$HOME/bin]


After the above steps you should have the MPI-enabled interpreter installed as prefix/bin/pythonX.X-mpi (or $HOME/bin/pythonX.X-mpi). Assuming that prefix/bin (or $HOME/bin) is listed on your PATH, you should be able to enter your MPI-enabled Python interactively, for example:

$ python2.7-mpi
Python 2.7.8 (default, Nov 10 2014, 08:19:18)
[GCC 4.9.2 20141101 (Red Hat 4.9.2-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.executable
'/usr/bin/python2.7-mpi'
>>>


Building MPI from sources

In the list below you have some executive instructions for building some of the open-source MPI implementations out there with support for shared/dynamic libraries on POSIX environments.

MPICH

$ tar -zxf mpich-X.X.X.tar.gz
$ cd mpich-X.X.X
$ ./configure --enable-shared --prefix=/usr/local/mpich
$ make
$ make install


Open MPI

$ tar -zxf openmpi-X.X.X tar.gz
$ cd openmpi-X.X.X
$ ./configure --prefix=/usr/local/openmpi
$ make all
$ make install


MPICH 1

$ tar -zxf mpich-X.X.X.tar.gz
$ cd mpich-X.X.X
$ ./configure --enable-sharedlib --prefix=/usr/local/mpich1
$ make
$ make install



Perhaps you will need to set the LD_LIBRARY_PATH environment variable (using export, setenv or what applies to your system) pointing to the directory containing the MPI libraries . In case of getting runtime linking errors when running MPI programs, the following lines can be added to the user login shell script (.profile, .bashrc, etc.).

MPICH

MPI_DIR=/usr/local/mpich
export LD_LIBRARY_PATH=$MPI_DIR/lib:$LD_LIBRARY_PATH


Open MPI

MPI_DIR=/usr/local/openmpi
export LD_LIBRARY_PATH=$MPI_DIR/lib:$LD_LIBRARY_PATH


MPICH 1

MPI_DIR=/usr/local/mpich1
export LD_LIBRARY_PATH=$MPI_DIR/lib/shared:$LD_LIBRARY_PATH:
export MPICH_USE_SHLIB=yes


WARNING:

MPICH 1 support for dynamic libraries is not completely transparent. Users should set the environment variable MPICH_USE_SHLIB to yes in order to avoid link problems when using the mpicc compiler wrapper.



AUTHOR

Lisandro Dalcin

COPYRIGHT

2021, Lisandro Dalcin

November 5, 2021 3.1