Scroll to navigation

mia-mesh-deformable-model(1) General Commands Manual mia-mesh-deformable-model(1)

NAME

mia-mesh-deformable-model - Fit a mesh by using a deformable model.

SYNOPSIS

mia-mesh-deformable-model -i <in-file> -o <out-file> -r <ref-file> [options]

DESCRIPTION

mia-mesh-deformable-model This program runs a deformable model to adapt a mesh to an iso-value within a given image. <FIXME: Reference>

OPTIONS

File I/O

input mesh to be adapted
For supported file types see PLUGINS:mesh/io
output mesh that has been deformed
For supported file types see PLUGINS:mesh/io
reference image
For supported file types see PLUGINS:3dimage/io

Help & Info

verbosity of output, print messages of given level and higher priorities. Supported priorities starting at lowest level are:

trace ‐ Function call trace
debug ‐ Debug output
info ‐ Low level messages
message ‐ Normal messages
warning ‐ Warnings
fail ‐ Report test failures
error ‐ Report errors
fatal ‐ Report only fatal errors
print copyright information

print this help

-? --usage
print a short help

print the version number and exit

Model parameters

Weight of the inner force used to smooth the mesh

Weight of the gradient force drive the mesh deformation. Use a negative value to invert the search direction.

Weight of the force resulting from the intensity difference at the vertex position versus the reference intensity 'iso'.

Scaling of the raw intensity difference.

Intensity value the mesh verices should adapt to.

Preprocessing

Prefilter to smooth the reference image.
For supported plugins see PLUGINS:3dimage/filter

Processing

Maxiumum number of threads to use for processing,This number should be lower or equal to the number of logical processor cores in the machine. (-1: automatic estimation).

Maximum number of iterations.

Stop iteration when the maximum shift of the vertices falls below this value

--reorient
Reorientate the mesh triangles

PLUGINS: 1d/spacialkernel

Central difference filter kernel, mirror boundary conditions are used.

(no parameters)
spacial Gauss filter kernel, supported parameters are:

w = 1; uint in [0, inf)
half filter width.

This plugin provides the 1D folding kernel for the Scharr gradient filter

(no parameters)

PLUGINS: 1d/splinebc

Spline interpolation boundary conditions that mirror on the boundary

(no parameters)
Spline interpolation boundary conditions that repeats the value at the boundary

(no parameters)
Spline interpolation boundary conditions that assumes zero for values outside

(no parameters)

PLUGINS: 1d/splinekernel

B-spline kernel creation , supported parameters are:

d = 3; int in [0, 5]
Spline degree.

OMoms-spline kernel creation, supported parameters are:

d = 3; int in [3, 3]
Spline degree.

PLUGINS: 3dimage/combiner

Image combiner 'absdiff'

(no parameters)
Image combiner 'add'

(no parameters)
Image combiner 'div'

(no parameters)
Image combiner 'mul'

(no parameters)
Image combiner 'sub'

(no parameters)

PLUGINS: 3dimage/filter

intensity bandpass filter, supported parameters are:

max = 3.40282e+38; float
maximum of the band.

min = 0; float
minimum of the band.

image binarize filter, supported parameters are:

max = 3.40282e+38; float
maximum of accepted range.

min = 0; float
minimum of accepted range.

morphological close, supported parameters are:

hint = black; string
a hint at the main image content (black|white).

shape = [sphere:r=2]; factory
structuring element. For supported plug-ins see PLUGINS:3dimage/shape

Combine two images with the given combiner operator. if 'reverse' is set to false, the first operator is the image passed through the filter pipeline, and the second image is loaded from the file given with the 'image' parameter the moment the filter is run., supported parameters are:

image =(input, required, io)
second image that is needed in the combiner. For supported file types see PLUGINS:3dimage/io

op =(required, factory)
Image combiner to be applied to the images. For supported plug-ins see PLUGINS:3dimage/combiner

reverse = 0; bool
reverse the order in which the images passed to the combiner.

image pixel format conversion filter, supported parameters are:

a = 1; float
linear conversion parameter a.

b = 0; float
linear conversion parameter b.

map = opt; dict
conversion mapping. Supported values are:
copy ‐ copy data when converting
linear ‐ apply linear transformation x -> a*x+b
range ‐ apply linear transformation that maps the input data type range to the output data type range
opt ‐ apply a linear transformation that maps the real input range to the full output range
optstat ‐ apply a linear transform that maps based on input mean and variation to the full output range

repn = ubyte; dict
output pixel type. Supported values are:
bit ‐ binary data
sbyte ‐ signed 8 bit
ubyte ‐ unsigned 8 bit
sshort ‐ signed 16 bit
ushort ‐ unsigned 16 bit
sint ‐ signed 32 bit
uint ‐ unsigned 32 bit
slong ‐ signed 64 bit
ulong ‐ unsigned 64 bit
float ‐ floating point 32 bit
double ‐ floating point 64 bit
none ‐ no pixel type defined

Crop a region of an image, the region is always clamped to the original image size in the sense that the given range is kept., supported parameters are:

end = [[4294967295,4294967295,4294967295]]; streamable
end of cropping range, maximum = (-1,-1,-1).

start = [[0,0,0]]; streamable
begin of cropping range.

3d image stack dilate filter, supported parameters are:

hint = black; string
a hint at the main image content (black|white).

shape = [sphere:r=2]; factory
structuring element. For supported plug-ins see PLUGINS:3dimage/shape

Evaluate the 3D distance transform of an image. If the image is a binary mask, then result of the distance transform in each point corresponds to the Euclidian distance to the mask. If the input image is of a scalar pixel value, then the this scalar is interpreted as heighfield and the per pixel value adds to the distance.

(no parameters)
Downscale the input image by using a given block size to define the downscale factor. Prior to scaling the image is filtered by a smoothing filter to eliminate high frequency data and avoid aliasing artifacts., supported parameters are:

b = [[1,1,1]]; 3dbounds
blocksize.

bx = 1; uint in [1, inf)
blocksize in x direction.

by = 1; uint in [1, inf)
blocksize in y direction.

bz = 1; uint in [1, inf)
blocksize in z direction.

kernel = gauss; factory
smoothing filter kernel to be applied, the size of the filter is estimated based on the blocksize.. For supported plug-ins see PLUGINS:1d/spacialkernel

3d image stack erode filter, supported parameters are:

hint = black; string
a hint at the main image content (black|white).

shape = [sphere:r=2]; factory
structuring element. For supported plug-ins see PLUGINS:3dimage/shape

isotropic 3D gauss filter, supported parameters are:

w = 1; int in [0, inf)
filter width parameter.

3D image to gradient norm filter

(no parameters)
Use an input binary mask and a reference gray scale image to do region growing by adding the neighborhood pixels of an already added pixel if the have a lower intensity that is above the given threshold., supported parameters are:

min = 1; float
lower threshold for mask growing.

ref =(input, required, io)
reference image for mask region growing. For supported file types see PLUGINS:3dimage/io

shape = 6n; factory
neighborhood mask. For supported plug-ins see PLUGINS:3dimage/shape

intensity invert filter

(no parameters)
This filter scales an image to make the voxel size isometric and its size to correspond to the given value, supported parameters are:

interp = [bspline:d=3]; factory
interpolation kernel to be used . For supported plug-ins see PLUGINS:1d/splinekernel

size = 1; float in (0, inf)
isometric target voxel size.

3D image k-means filter. In the output image the pixel value represents the class membership and the class centers are stored as attribute in the image., supported parameters are:

c = 3; int in [2, inf)
number of classes.

A filter to label the connected components of a binary image., supported parameters are:

n = 6n; factory
neighborhood mask. For supported plug-ins see PLUGINS:3dimage/shape

Image filter to remap label id's. Only applicable to images with integer valued intensities/labels., supported parameters are:

map =(input, required, string)
Label mapping file.

A filter that only creates output voxels that are already created in the input image. Scaling is done by using a voting algorithms that selects the target pixel value based on the highest pixel count of a certain label in the corresponding source region. If the region comprises two labels with the same count, the one with the lower number wins., supported parameters are:

out-size =(required, 3dbounds)
target size given as two coma separated values.

Load the input image from a file and use it to replace the current image in the pipeline., supported parameters are:

file =(input, required, io)
name of the input file to load from.. For supported file types see PLUGINS:3dimage/io

This is a label voting downscale filter. It adownscales a 3D image by blocks. For each block the (non-zero) label that appears most times in the block is issued as output pixel in the target image. If two labels appear the same number of times, the one with the lower absolute value wins., supported parameters are:

b = [[1,1,1]]; 3dbounds
blocksize for the downscaling. Each block will be represented by one pixel in the target image..

Mask an image, one image is taken from the parameters list and the other from the normal filter input. Both images must be of the same dimensions and one must be binary. The attributes of the image coming through the filter pipeline are preserved. The output pixel type corresponds to the input image that is not binary., supported parameters are:

input =(input, required, io)
second input image file name. For supported file types see PLUGINS:3dimage/io

3D image mean filter, supported parameters are:

w = 1; int in [1, inf)
half filter width.

median 3d filter, supported parameters are:

w = 1; int in [1, inf)
filter width parameter.

Mean of Least Variance 3D image filter, supported parameters are:

w = 1; int in [1, inf)
filter width parameter.

3D image mean-sigma normalizing filter, supported parameters are:

w = 1; int in [1, inf)
half filter width.

morphological open, supported parameters are:

hint = black; string
a hint at the main image content (black|white).

shape = [sphere:r=2]; factory
structuring element. For supported plug-ins see PLUGINS:3dimage/shape

3D image reorientation filter, supported parameters are:

map = xyz; dict
oriantation mapping to be applied. Supported values are:
xyz ‐ keep orientation
p-yzx ‐ permutate x->z->y->x
p-zxy ‐ permutate x->y->z->x
f-yz ‐ flip y-z
f-xy ‐ flip x-y
f-xz ‐ flip x-z
r-x90 ‐ rotate around x-axis clockwise 90 degree
r-x180 ‐ rotate around x-axis clockwise 180 degree
r-x270 ‐ rotate around x-axis clockwise 270 degree
r-y90 ‐ rotate around y-axis clockwise 90 degree
r-y180 ‐ rotate around y-axis clockwise 180 degree
r-y270 ‐ rotate around y-axis clockwise 270 degree
r-z90 ‐ rotate around z-axis clockwise 90 degree
r-z180 ‐ rotate around z-axis clockwise 180 degree
r-z270 ‐ rotate around z-axis clockwise 270 degree

Resize an image. The original data is centered within the new sized image., supported parameters are:

size = [[0,0,0]]; streamable
new size of the image a size 0 indicates to keep the size for the corresponding dimension..

salt and pepper 3d filter, supported parameters are:

thresh = 100; float in [0, inf)
thresh value.

w = 1; int in [1, inf)
filter width parameter.

3D image filter that scales to a given target size , supported parameters are:

interp = [bspline:d=3]; factory
interpolation kernel to be used . For supported plug-ins see PLUGINS:1d/splinekernel

s = [[0,0,0]]; 3dbounds
target size to set all components at once (component 0:use input image size).

sx = 0; uint in [0, inf)
target size in x direction (0:use input image size).

sy = 0; uint in [0, inf)
target size in y direction (0:use input image size).

sz = 0; uint in [0, inf)
target size in y direction (0:use input image size).

The 3D Scharr filter for gradient evaluation. Note that the output pixel type of the filtered image is the same as the input pixel type, so converting the input beforehand to a floating point valued image is recommendable., supported parameters are:

dir = x; dict
Gradient direction. Supported values are:
x ‐ gradient in x-direction
y ‐ gradient in y-direction
z ‐ gradient in z-direction

A filter that creats a binary mask representing the intensity with the highest pixel count.The pixel value 0 will be ignored, and if two intensities have the same pixel count, then the result is undefined. The input pixel must have an integral pixel type.

(no parameters)
3D image intensity separaple convolution filter, supported parameters are:

kx = [gauss:w=1]; factory
filter kernel in x-direction. For supported plug-ins see PLUGINS:1d/spacialkernel

ky = [gauss:w=1]; factory
filter kernel in y-direction. For supported plug-ins see PLUGINS:1d/spacialkernel

kz = [gauss:w=1]; factory
filter kernel in z-direction. For supported plug-ins see PLUGINS:1d/spacialkernel

The 2D Sobel filter for gradient evaluation. Note that the output pixel type of the filtered image is the same as the input pixel type, so converting the input beforehand to a floating point valued image is recommendable., supported parameters are:

dir = x; dict
Gradient direction. Supported values are:
x ‐ gradient in x-direction
y ‐ gradient in y-direction
z ‐ gradient in z-direction

seeded watershead. The algorithm extracts exactly so many reagions as initial labels are given in the seed image., supported parameters are:

grad = 0; bool
Interpret the input image as gradient. .

mark = 0; bool
Mark the segmented watersheds with a special gray scale value.

n = [sphere:r=1]; factory
Neighborhood for watershead region growing. For supported plug-ins see PLUGINS:3dimage/shape

seed =(input, required, string)
seed input image containing the lables for the initial regions.

Save the input image to a file and also pass it through to the next filter, supported parameters are:

file =(output, required, io)
name of the output file to save the image too.. For supported file types see PLUGINS:3dimage/io

3D morphological thinning, based on: Lee and Kashyap, 'Building Skeleton Models via 3-D Medial Surface/Axis Thinning Algorithms', Graphical Models and Image Processing, 56(6):462-478, 1994. This implementation only supports the 26 neighbourhood.

(no parameters)
Transform the input image with the given transformation., supported parameters are:

file =(input, required, io)
Name of the file containing the transformation.. For supported file types see PLUGINS:3dtransform/io

imgboundary = ; factory
override image interpolation boundary conditions. For supported plug-ins see PLUGINS:1d/splinebc

imgkernel = ; factory
override image interpolator kernel. For supported plug-ins see PLUGINS:1d/splinekernel

3D image variance filter, supported parameters are:

w = 1; int in [1, inf)
half filter width.

basic watershead segmentation., supported parameters are:

evalgrad = 0; bool
Set to 1 if the input image does not represent a gradient norm image.

mark = 0; bool
Mark the segmented watersheds with a special gray scale value.

n = [sphere:r=1]; factory
Neighborhood for watershead region growing. For supported plug-ins see PLUGINS:3dimage/shape

thresh = 0; float in [0, 1)
Relative gradient norm threshold. The actual value threshold value is thresh * (max_grad - min_grad) + min_grad. Bassins separated by gradients with a lower norm will be joined.

PLUGINS: 3dimage/io

Analyze 7.5 image

Recognized file extensions: .HDR, .hdr

Supported element types:
unsigned 8 bit, signed 16 bit, signed 32 bit, floating point 32 bit, floating point 64 bit

Virtual IO to and from the internal data pool

Recognized file extensions: .@

Dicom image series as 3D

Recognized file extensions: .DCM, .dcm

Supported element types:
signed 16 bit, unsigned 16 bit

HDF5 3D image IO

Recognized file extensions: .H5, .h5

Supported element types:
binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, signed 64 bit, unsigned 64 bit, floating point 32 bit, floating point 64 bit

INRIA image

Recognized file extensions: .INR, .inr

Supported element types:
signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

MetaIO 3D image IO using the VTK implementation (experimental).

Recognized file extensions: .MHA, .MHD, .mha, .mhd

Supported element types:
signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

NIFTI-1 3D image IO. The orientation is transformed in the same way like it is done with 'dicomtonifti --no-reorder' from the vtk-dicom package.

Recognized file extensions: .NII, .nii

Supported element types:
signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, signed 64 bit, unsigned 64 bit, floating point 32 bit, floating point 64 bit

VFF Sun raster format

Recognized file extensions: .VFF, .vff

Supported element types:
unsigned 8 bit, signed 16 bit

Vista 3D

Recognized file extensions: .-, .V, .VISTA, .v, .vista

Supported element types:
binary data, signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

3D image VTK-XML in- and output (experimental).

Recognized file extensions: .VTI, .vti

Supported element types:
signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

3D VTK image legacy in- and output (experimental).

Recognized file extensions: .VTK, .VTKIMAGE, .vtk, .vtkimage

Supported element types:
signed 8 bit, unsigned 8 bit, signed 16 bit, unsigned 16 bit, signed 32 bit, unsigned 32 bit, floating point 32 bit, floating point 64 bit

PLUGINS: 3dimage/shape

18n
18n neighborhood 3D shape creator

(no parameters)
26n
26n neighborhood 3D shape creator

(no parameters)
6n
6n neighborhood 3D shape creator

(no parameters)
Closed spherical shape neighborhood including the pixels within a given radius r., supported parameters are:

r = 2; float in (0, inf)
sphere radius.

PLUGINS: 3dtransform/io

Binary (non-portable) serialized IO of 3D transformations

Recognized file extensions: .bbs

Virtual IO to and from the internal data pool

Recognized file extensions: .@

Vista storage of 3D transformations

Recognized file extensions: .v, .v3dt

XML serialized IO of 3D transformations

Recognized file extensions: .x3dt

PLUGINS: mesh/io

Virtual IO to and from the internal data pool

Recognized file extensions: .@

plugin to load/store some Geomview OFF files. Supported is only the ASCII format 3D meshes with normales and per-vertex RGB colors. Alpha values and texture coordinates, as well as per face properties are ignored. Polygons are read and triangulated.

Recognized file extensions: .OFF, .off

Ply triangle mesh input/output support

Recognized file extensions: .PLY, .ply

STL mesh io plugin

Recognized file extensions: .STL, .stl

Vista/Simbio triangle mesh input/output support

Recognized file extensions: .-, .V, .VMESH, .v, .vmesh

A subset of VTK mesh in-and output: Triangle meshes are written, and triangle meshes and triangle strips are read. Additional per-vertex attributes are supported: 'normals', 'colors' for three component colors, and 'scale' for a scalar value attached to each vertex. The data is written by the vtkPolyDataWriter in binary format.

Recognized file extensions: .VTK, .VTKMESH, .vtk, .vtkmesh

EXAMPLE

Run the deforemable model on input.vmesh with 200 iterations adapting to a value of 128 in the image ref.v and save the result to deformed.vmesh

mia-mesh-deformable-model -i input.vmesh -o deformed.vmesh --iso 128 --maxiter 200

AUTHOR(s)

Gert Wollny

COPYRIGHT

This software is Copyright (c) 1999‐2015 Leipzig, Germany and Madrid, Spain. It comes with ABSOLUTELY NO WARRANTY and you may redistribute it under the terms of the GNU GENERAL PUBLIC LICENSE Version 3 (or later). For more information run the program with the option '--copyright'.

v2.4.7 USER COMMANDS