.\" Man page generated from reStructuredText. . .TH "LLVM-EXEGESIS" "1" "2019-09-13" "9" "LLVM" .SH NAME llvm-exegesis \- LLVM Machine Instruction Benchmark . .nr rst2man-indent-level 0 . .de1 rstReportMargin \\$1 \\n[an-margin] level \\n[rst2man-indent-level] level margin: \\n[rst2man-indent\\n[rst2man-indent-level]] - \\n[rst2man-indent0] \\n[rst2man-indent1] \\n[rst2man-indent2] .. .de1 INDENT .\" .rstReportMargin pre: . RS \\$1 . nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin] . nr rst2man-indent-level +1 .\" .rstReportMargin post: .. .de UNINDENT . RE .\" indent \\n[an-margin] .\" old: \\n[rst2man-indent\\n[rst2man-indent-level]] .nr rst2man-indent-level -1 .\" new: \\n[rst2man-indent\\n[rst2man-indent-level]] .in \\n[rst2man-indent\\n[rst2man-indent-level]]u .. .SH SYNOPSIS .sp \fBllvm\-exegesis\fP [\fIoptions\fP] .SH DESCRIPTION .sp \fBllvm\-exegesis\fP is a benchmarking tool that uses information available in LLVM to measure host machine instruction characteristics like latency, throughput, or port decomposition. .sp Given an LLVM opcode name and a benchmarking mode, \fBllvm\-exegesis\fP generates a code snippet that makes execution as serial (resp. as parallel) as possible so that we can measure the latency (resp. inverse throughput/uop decomposition) of the instruction. The code snippet is jitted and executed on the host subtarget. The time taken (resp. resource usage) is measured using hardware performance counters. The result is printed out as YAML to the standard output. .sp The main goal of this tool is to automatically (in)validate the LLVM’s TableDef scheduling models. To that end, we also provide analysis of the results. .sp \fBllvm\-exegesis\fP can also benchmark arbitrary user\-provided code snippets. .SH EXAMPLE 1: BENCHMARKING INSTRUCTIONS .sp Assume you have an X86\-64 machine. To measure the latency of a single instruction, run: .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C $ llvm\-exegesis \-mode=latency \-opcode\-name=ADD64rr .ft P .fi .UNINDENT .UNINDENT .sp Measuring the uop decomposition or inverse throughput of an instruction works similarly: .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C $ llvm\-exegesis \-mode=uops \-opcode\-name=ADD64rr $ llvm\-exegesis \-mode=inverse_throughput \-opcode\-name=ADD64rr .ft P .fi .UNINDENT .UNINDENT .sp The output is a YAML document (the default is to write to stdout, but you can redirect the output to a file using \fI\-benchmarks\-file\fP): .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C \-\-\- key: opcode_name: ADD64rr mode: latency config: \(aq\(aq cpu_name: haswell llvm_triple: x86_64\-unknown\-linux\-gnu num_repetitions: 10000 measurements: \- { key: latency, value: 1.0058, debug_string: \(aq\(aq } error: \(aq\(aq info: \(aqexplicit self cycles, selecting one aliasing configuration. Snippet: ADD64rr R8, R8, R10 \(aq \&... .ft P .fi .UNINDENT .UNINDENT .sp To measure the latency of all instructions for the host architecture, run: .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C #!/bin/bash readonly INSTRUCTIONS=$(($(grep INSTRUCTION_LIST_END build/lib/Target/X86/X86GenInstrInfo.inc | cut \-f2 \-d=) \- 1)) for INSTRUCTION in $(seq 1 ${INSTRUCTIONS}); do ./build/bin/llvm\-exegesis \-mode=latency \-opcode\-index=${INSTRUCTION} | sed \-n \(aq/\-\-\-/,$p\(aq done .ft P .fi .UNINDENT .UNINDENT .sp FIXME: Provide an \fBllvm\-exegesis\fP option to test all instructions. .SH EXAMPLE 2: BENCHMARKING A CUSTOM CODE SNIPPET .sp To measure the latency/uops of a custom piece of code, you can specify the \fIsnippets\-file\fP option (\fI\-\fP reads from standard input). .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C $ echo "vzeroupper" | llvm\-exegesis \-mode=uops \-snippets\-file=\- .ft P .fi .UNINDENT .UNINDENT .sp Real\-life code snippets typically depend on registers or memory. \fBllvm\-exegesis\fP checks the liveliness of registers (i.e. any register use has a corresponding def or is a “live in”). If your code depends on the value of some registers, you have two options: .INDENT 0.0 .IP \(bu 2 Mark the register as requiring a definition. \fBllvm\-exegesis\fP will automatically assign a value to the register. This can be done using the directive \fILLVM\-EXEGESIS\-DEFREG \fP, where \fI\fP is a bit pattern used to fill \fI\fP\&. If \fI\fP is smaller than the register width, it will be sign\-extended. .IP \(bu 2 Mark the register as a “live in”. \fBllvm\-exegesis\fP will benchmark using whatever value was in this registers on entry. This can be done using the directive \fILLVM\-EXEGESIS\-LIVEIN \fP\&. .UNINDENT .sp For example, the following code snippet depends on the values of XMM1 (which will be set by the tool) and the memory buffer passed in RDI (live in). .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C # LLVM\-EXEGESIS\-LIVEIN RDI # LLVM\-EXEGESIS\-DEFREG XMM1 42 vmulps (%rdi), %xmm1, %xmm2 vhaddps %xmm2, %xmm2, %xmm3 addq $0x10, %rdi .ft P .fi .UNINDENT .UNINDENT .SH EXAMPLE 3: ANALYSIS .sp Assuming you have a set of benchmarked instructions (either latency or uops) as YAML in file \fI/tmp/benchmarks.yaml\fP, you can analyze the results using the following command: .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C $ llvm\-exegesis \-mode=analysis \e \-benchmarks\-file=/tmp/benchmarks.yaml \e \-analysis\-clusters\-output\-file=/tmp/clusters.csv \e \-analysis\-inconsistencies\-output\-file=/tmp/inconsistencies.html .ft P .fi .UNINDENT .UNINDENT .sp This will group the instructions into clusters with the same performance characteristics. The clusters will be written out to \fI/tmp/clusters.csv\fP in the following format: .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C cluster_id,opcode_name,config,sched_class \&... 2,ADD32ri8_DB,,WriteALU,1.00 2,ADD32ri_DB,,WriteALU,1.01 2,ADD32rr,,WriteALU,1.01 2,ADD32rr_DB,,WriteALU,1.00 2,ADD32rr_REV,,WriteALU,1.00 2,ADD64i32,,WriteALU,1.01 2,ADD64ri32,,WriteALU,1.01 2,MOVSX64rr32,,BSWAP32r_BSWAP64r_MOVSX64rr32,1.00 2,VPADDQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.02 2,VPSUBQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.01 2,ADD64ri8,,WriteALU,1.00 2,SETBr,,WriteSETCC,1.01 \&... .ft P .fi .UNINDENT .UNINDENT .sp \fBllvm\-exegesis\fP will also analyze the clusters to point out inconsistencies in the scheduling information. The output is an html file. For example, \fI/tmp/inconsistencies.html\fP will contain messages like the following : [image] .sp Note that the scheduling class names will be resolved only when \fBllvm\-exegesis\fP is compiled in debug mode, else only the class id will be shown. This does not invalidate any of the analysis results though. .SH OPTIONS .INDENT 0.0 .TP .B \-help Print a summary of command line options. .UNINDENT .INDENT 0.0 .TP .B \-opcode\-index= Specify the opcode to measure, by index. See example 1 for details. Either \fIopcode\-index\fP, \fIopcode\-name\fP or \fIsnippets\-file\fP must be set. .UNINDENT .INDENT 0.0 .TP .B \-opcode\-name=,,... Specify the opcode to measure, by name. Several opcodes can be specified as a comma\-separated list. See example 1 for details. Either \fIopcode\-index\fP, \fIopcode\-name\fP or \fIsnippets\-file\fP must be set. .INDENT 7.0 .TP .B \-snippets\-file= Specify the custom code snippet to measure. See example 2 for details. Either \fIopcode\-index\fP, \fIopcode\-name\fP or \fIsnippets\-file\fP must be set. .UNINDENT .UNINDENT .INDENT 0.0 .TP .B \-mode=[latency|uops|inverse_throughput|analysis] Specify the run mode. Note that if you pick \fIanalysis\fP mode, you also need to specify at least one of the \fI\-analysis\-clusters\-output\-file=\fP and \fI\-analysis\-inconsistencies\-output\-file=\fP\&. .UNINDENT .INDENT 0.0 .TP .B \-num\-repetitions= Specify the number of repetitions of the asm snippet. Higher values lead to more accurate measurements but lengthen the benchmark. .UNINDENT .INDENT 0.0 .TP .B \-benchmarks\-file= File to read (\fIanalysis\fP mode) or write (\fIlatency\fP/\fIuops\fP/\fIinverse_throughput\fP modes) benchmark results. “\-” uses stdin/stdout. .UNINDENT .INDENT 0.0 .TP .B \-analysis\-clusters\-output\-file= If provided, write the analysis clusters as CSV to this file. “\-” prints to stdout. By default, this analysis is not run. .UNINDENT .INDENT 0.0 .TP .B \-analysis\-inconsistencies\-output\-file= If non\-empty, write inconsistencies found during analysis to this file. \fI\-\fP prints to stdout. By default, this analysis is not run. .UNINDENT .INDENT 0.0 .TP .B \-analysis\-clustering=[dbscan,naive] Specify the clustering algorithm to use. By default DBSCAN will be used. Naive clustering algorithm is better for doing further work on the \fI\-analysis\-inconsistencies\-output\-file=\fP output, it will create one cluster per opcode, and check that the cluster is stable (all points are neighbours). .UNINDENT .INDENT 0.0 .TP .B \-analysis\-numpoints= Specify the numPoints parameters to be used for DBSCAN clustering (\fIanalysis\fP mode, DBSCAN only). .UNINDENT .INDENT 0.0 .TP .B \-analysis\-clustering\-epsilon= Specify the epsilon parameter used for clustering of benchmark points (\fIanalysis\fP mode). .UNINDENT .INDENT 0.0 .TP .B \-analysis\-inconsistency\-epsilon= Specify the epsilon parameter used for detection of when the cluster is different from the LLVM schedule profile values (\fIanalysis\fP mode). .UNINDENT .INDENT 0.0 .TP .B \-analysis\-display\-unstable\-clusters If there is more than one benchmark for an opcode, said benchmarks may end up not being clustered into the same cluster if the measured performance characteristics are different. by default all such opcodes are filtered out. This flag will instead show only such unstable opcodes. .UNINDENT .INDENT 0.0 .TP .B \-ignore\-invalid\-sched\-class=false If set, ignore instructions that do not have a sched class (class idx = 0). .UNINDENT .INDENT 0.0 .TP .B \-mcpu= If set, measure the cpu characteristics using the counters for this CPU. This is useful when creating new sched models (the host CPU is unknown to LLVM). .UNINDENT .INDENT 0.0 .TP .B \-\-dump\-object\-to\-disk=true By default, llvm\-exegesis will dump the generated code to a temporary file to enable code inspection. You may disable it to speed up the execution and save disk space. .UNINDENT .SH EXIT STATUS .sp \fBllvm\-exegesis\fP returns 0 on success. Otherwise, an error message is printed to standard error, and the tool returns a non 0 value. .SH AUTHOR Maintained by the LLVM Team (https://llvm.org/). .SH COPYRIGHT 2003-2019, LLVM Project .\" Generated by docutils manpage writer. .