.TH "ungtsqr_row" 3 "Sat Dec 9 2023 21:42:18" "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME ungtsqr_row \- {un,or}gtsqr_row: generate Q from latsqr .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcungtsqr_row\fP (m, n, mb, nb, a, lda, t, ldt, work, lwork, info)" .br .RI "\fBCUNGTSQR_ROW\fP " .ti -1c .RI "subroutine \fBdorgtsqr_row\fP (m, n, mb, nb, a, lda, t, ldt, work, lwork, info)" .br .RI "\fBDORGTSQR_ROW\fP " .ti -1c .RI "subroutine \fBsorgtsqr_row\fP (m, n, mb, nb, a, lda, t, ldt, work, lwork, info)" .br .RI "\fBSORGTSQR_ROW\fP " .ti -1c .RI "subroutine \fBzungtsqr_row\fP (m, n, mb, nb, a, lda, t, ldt, work, lwork, info)" .br .RI "\fBZUNGTSQR_ROW\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cungtsqr_row (integer m, integer n, integer mb, integer nb, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldt, * ) t, integer ldt, complex, dimension( * ) work, integer lwork, integer info)" .PP \fBCUNGTSQR_ROW\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CUNGTSQR_ROW generates an M-by-N complex matrix Q_out with orthonormal columns from the output of CLATSQR\&. These N orthonormal columns are the first N columns of a product of complex unitary matrices Q(k)_in of order M, which are returned by CLATSQR in a special format\&. Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * \&.\&.\&. * Q(k)_in )\&. The input matrices Q(k)_in are stored in row and column blocks in A\&. See the documentation of CLATSQR for more details on the format of Q(k)_in, where each Q(k)_in is represented by block Householder transformations\&. This routine calls an auxiliary routine CLARFB_GETT, where the computation is performed on each individual block\&. The algorithm first sweeps NB-sized column blocks from the right to left starting in the bottom row block and continues to the top row block (hence _ROW in the routine name)\&. This sweep is in reverse order of the order in which CLATSQR generates the output blocks\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. M >= N >= 0\&. .fi .PP .br \fIMB\fP .PP .nf MB is INTEGER The row block size used by CLATSQR to return arrays A and T\&. MB > N\&. (Note that if MB > M, then M is used instead of MB as the row block size)\&. .fi .PP .br \fINB\fP .PP .nf NB is INTEGER The column block size used by CLATSQR to return arrays A and T\&. NB >= 1\&. (Note that if NB > N, then N is used instead of NB as the column block size)\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry: The elements on and above the diagonal are not used as input\&. The elements below the diagonal represent the unit lower-trapezoidal blocked matrix V computed by CLATSQR that defines the input matrices Q_in(k) (ones on the diagonal are not stored)\&. See CLATSQR for more details\&. On exit: The array A contains an M-by-N orthonormal matrix Q_out, i\&.e the columns of A are orthogonal unit vectors\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fIT\fP .PP .nf T is COMPLEX array, dimension (LDT, N * NIRB) where NIRB = Number_of_input_row_blocks = MAX( 1, CEIL((M-N)/(MB-N)) ) Let NICB = Number_of_input_col_blocks = CEIL(N/NB) The upper-triangular block reflectors used to define the input matrices Q_in(k), k=(1:NIRB*NICB)\&. The block reflectors are stored in compact form in NIRB block reflector sequences\&. Each of the NIRB block reflector sequences is stored in a larger NB-by-N column block of T and consists of NICB smaller NB-by-NB upper-triangular column blocks\&. See CLATSQR for more details on the format of T\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= max(1,min(NB,N))\&. .fi .PP .br \fIWORK\fP .PP .nf (workspace) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf The dimension of the array WORK\&. LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), where NBLOCAL=MIN(NB,N)\&. If LWORK = -1, then a workspace query is assumed\&. The routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 .PP .nf November 2020, Igor Kozachenko, Computer Science Division, University of California, Berkeley .fi .PP .RE .PP .SS "subroutine dorgtsqr_row (integer m, integer n, integer mb, integer nb, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldt, * ) t, integer ldt, double precision, dimension( * ) work, integer lwork, integer info)" .PP \fBDORGTSQR_ROW\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DORGTSQR_ROW generates an M-by-N real matrix Q_out with orthonormal columns from the output of DLATSQR\&. These N orthonormal columns are the first N columns of a product of complex unitary matrices Q(k)_in of order M, which are returned by DLATSQR in a special format\&. Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * \&.\&.\&. * Q(k)_in )\&. The input matrices Q(k)_in are stored in row and column blocks in A\&. See the documentation of DLATSQR for more details on the format of Q(k)_in, where each Q(k)_in is represented by block Householder transformations\&. This routine calls an auxiliary routine DLARFB_GETT, where the computation is performed on each individual block\&. The algorithm first sweeps NB-sized column blocks from the right to left starting in the bottom row block and continues to the top row block (hence _ROW in the routine name)\&. This sweep is in reverse order of the order in which DLATSQR generates the output blocks\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. M >= N >= 0\&. .fi .PP .br \fIMB\fP .PP .nf MB is INTEGER The row block size used by DLATSQR to return arrays A and T\&. MB > N\&. (Note that if MB > M, then M is used instead of MB as the row block size)\&. .fi .PP .br \fINB\fP .PP .nf NB is INTEGER The column block size used by DLATSQR to return arrays A and T\&. NB >= 1\&. (Note that if NB > N, then N is used instead of NB as the column block size)\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry: The elements on and above the diagonal are not used as input\&. The elements below the diagonal represent the unit lower-trapezoidal blocked matrix V computed by DLATSQR that defines the input matrices Q_in(k) (ones on the diagonal are not stored)\&. See DLATSQR for more details\&. On exit: The array A contains an M-by-N orthonormal matrix Q_out, i\&.e the columns of A are orthogonal unit vectors\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fIT\fP .PP .nf T is DOUBLE PRECISION array, dimension (LDT, N * NIRB) where NIRB = Number_of_input_row_blocks = MAX( 1, CEIL((M-N)/(MB-N)) ) Let NICB = Number_of_input_col_blocks = CEIL(N/NB) The upper-triangular block reflectors used to define the input matrices Q_in(k), k=(1:NIRB*NICB)\&. The block reflectors are stored in compact form in NIRB block reflector sequences\&. Each of the NIRB block reflector sequences is stored in a larger NB-by-N column block of T and consists of NICB smaller NB-by-NB upper-triangular column blocks\&. See DLATSQR for more details on the format of T\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= max(1,min(NB,N))\&. .fi .PP .br \fIWORK\fP .PP .nf (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf The dimension of the array WORK\&. LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), where NBLOCAL=MIN(NB,N)\&. If LWORK = -1, then a workspace query is assumed\&. The routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 .PP .nf November 2020, Igor Kozachenko, Computer Science Division, University of California, Berkeley .fi .PP .RE .PP .SS "subroutine sorgtsqr_row (integer m, integer n, integer mb, integer nb, real, dimension( lda, * ) a, integer lda, real, dimension( ldt, * ) t, integer ldt, real, dimension( * ) work, integer lwork, integer info)" .PP \fBSORGTSQR_ROW\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SORGTSQR_ROW generates an M-by-N real matrix Q_out with orthonormal columns from the output of SLATSQR\&. These N orthonormal columns are the first N columns of a product of complex unitary matrices Q(k)_in of order M, which are returned by SLATSQR in a special format\&. Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * \&.\&.\&. * Q(k)_in )\&. The input matrices Q(k)_in are stored in row and column blocks in A\&. See the documentation of SLATSQR for more details on the format of Q(k)_in, where each Q(k)_in is represented by block Householder transformations\&. This routine calls an auxiliary routine SLARFB_GETT, where the computation is performed on each individual block\&. The algorithm first sweeps NB-sized column blocks from the right to left starting in the bottom row block and continues to the top row block (hence _ROW in the routine name)\&. This sweep is in reverse order of the order in which SLATSQR generates the output blocks\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. M >= N >= 0\&. .fi .PP .br \fIMB\fP .PP .nf MB is INTEGER The row block size used by SLATSQR to return arrays A and T\&. MB > N\&. (Note that if MB > M, then M is used instead of MB as the row block size)\&. .fi .PP .br \fINB\fP .PP .nf NB is INTEGER The column block size used by SLATSQR to return arrays A and T\&. NB >= 1\&. (Note that if NB > N, then N is used instead of NB as the column block size)\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry: The elements on and above the diagonal are not used as input\&. The elements below the diagonal represent the unit lower-trapezoidal blocked matrix V computed by SLATSQR that defines the input matrices Q_in(k) (ones on the diagonal are not stored)\&. See SLATSQR for more details\&. On exit: The array A contains an M-by-N orthonormal matrix Q_out, i\&.e the columns of A are orthogonal unit vectors\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fIT\fP .PP .nf T is REAL array, dimension (LDT, N * NIRB) where NIRB = Number_of_input_row_blocks = MAX( 1, CEIL((M-N)/(MB-N)) ) Let NICB = Number_of_input_col_blocks = CEIL(N/NB) The upper-triangular block reflectors used to define the input matrices Q_in(k), k=(1:NIRB*NICB)\&. The block reflectors are stored in compact form in NIRB block reflector sequences\&. Each of the NIRB block reflector sequences is stored in a larger NB-by-N column block of T and consists of NICB smaller NB-by-NB upper-triangular column blocks\&. See SLATSQR for more details on the format of T\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= max(1,min(NB,N))\&. .fi .PP .br \fIWORK\fP .PP .nf (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf The dimension of the array WORK\&. LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), where NBLOCAL=MIN(NB,N)\&. If LWORK = -1, then a workspace query is assumed\&. The routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 .PP .nf November 2020, Igor Kozachenko, Computer Science Division, University of California, Berkeley .fi .PP .RE .PP .SS "subroutine zungtsqr_row (integer m, integer n, integer mb, integer nb, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( * ) work, integer lwork, integer info)" .PP \fBZUNGTSQR_ROW\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZUNGTSQR_ROW generates an M-by-N complex matrix Q_out with orthonormal columns from the output of ZLATSQR\&. These N orthonormal columns are the first N columns of a product of complex unitary matrices Q(k)_in of order M, which are returned by ZLATSQR in a special format\&. Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * \&.\&.\&. * Q(k)_in )\&. The input matrices Q(k)_in are stored in row and column blocks in A\&. See the documentation of ZLATSQR for more details on the format of Q(k)_in, where each Q(k)_in is represented by block Householder transformations\&. This routine calls an auxiliary routine ZLARFB_GETT, where the computation is performed on each individual block\&. The algorithm first sweeps NB-sized column blocks from the right to left starting in the bottom row block and continues to the top row block (hence _ROW in the routine name)\&. This sweep is in reverse order of the order in which ZLATSQR generates the output blocks\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. M >= N >= 0\&. .fi .PP .br \fIMB\fP .PP .nf MB is INTEGER The row block size used by ZLATSQR to return arrays A and T\&. MB > N\&. (Note that if MB > M, then M is used instead of MB as the row block size)\&. .fi .PP .br \fINB\fP .PP .nf NB is INTEGER The column block size used by ZLATSQR to return arrays A and T\&. NB >= 1\&. (Note that if NB > N, then N is used instead of NB as the column block size)\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry: The elements on and above the diagonal are not used as input\&. The elements below the diagonal represent the unit lower-trapezoidal blocked matrix V computed by ZLATSQR that defines the input matrices Q_in(k) (ones on the diagonal are not stored)\&. See ZLATSQR for more details\&. On exit: The array A contains an M-by-N orthonormal matrix Q_out, i\&.e the columns of A are orthogonal unit vectors\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fIT\fP .PP .nf T is COMPLEX*16 array, dimension (LDT, N * NIRB) where NIRB = Number_of_input_row_blocks = MAX( 1, CEIL((M-N)/(MB-N)) ) Let NICB = Number_of_input_col_blocks = CEIL(N/NB) The upper-triangular block reflectors used to define the input matrices Q_in(k), k=(1:NIRB*NICB)\&. The block reflectors are stored in compact form in NIRB block reflector sequences\&. Each of the NIRB block reflector sequences is stored in a larger NB-by-N column block of T and consists of NICB smaller NB-by-NB upper-triangular column blocks\&. See ZLATSQR for more details on the format of T\&. .fi .PP .br \fILDT\fP .PP .nf LDT is INTEGER The leading dimension of the array T\&. LDT >= max(1,min(NB,N))\&. .fi .PP .br \fIWORK\fP .PP .nf (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf The dimension of the array WORK\&. LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), where NBLOCAL=MIN(NB,N)\&. If LWORK = -1, then a workspace query is assumed\&. The routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 .PP .nf November 2020, Igor Kozachenko, Computer Science Division, University of California, Berkeley .fi .PP .RE .PP .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.