'\" -*- coding: UTF-8 -*- .if \n(.g .ds T< \\FC .if \n(.g .ds T> \\F[\n[.fam]] .de URL \\$2 \(la\\$1\(ra\\$3 .. .if \n(.g .mso www.tmac .TH hdfimport 1 "28 May 2016" "" "" .SH NAME hdfimport \- imports ASCII or binary data into HDF .SH SYNOPSIS 'nh .fi .ad l \fBhdfimport\fR \kx .if (\nx>(\n(.l/2)) .nr x (\n(.l/5) 'in \n(.iu+\nxu [ [\fB-t[ype]\fR \fIoutput-type\fR | \fB-n\fR] [ [\fB-t[ype]\fR \fIoutput-type\fR | \fB-n\fR] \&... ] ] \fB-o[utfile]\fR \fIoutfile\fR [\fB-r[aster]\fR [ras_opts ...]] [\fB-f[loat]\fR] 'in \n(.iu-\nxu .ad b 'hy .SH DESCRIPTION \fBhdfimport\fR converts floating point data to HDF Scientific Data Set (SDS) and/or 8-bit Raster Image Set (RIS8) format, storing the results in an HDF file. The image data can be scaled about a mean value. .SH OPTIONS .TP \fIinfile(s)\fR Name of the input file(s), containing a single two-dimensional or three-dimensional floating point array in either ASCII text, native floating point, native integer or HDF SDS format. If an HDF file is used for input, it must contain an SDS. The SDS need only contain a dimension record and the data, but if it also contains maximum and minimum values and/or scales for each axis, these will be used. If the input format is ASCII text or native floating point or native integer, see "Notes" below on how it must be organized. .TP \*(T<\fB\-t[ype]\fR\*(T> \fIoutput-type\fR Optionally used for every input ASCII file to specify the data type of the data-set to be written. If not specified default data type is 32-bit floating point. \fIoutput-type\fR can be any of the following: FP32 (default), FP64, INT32, INT16, INT8. It can be used only with ASCII files. .TP .TP \*(T<\fB\-n\fR\*(T> This option is to be used only if the binary input file contains 64-bit floating point data and the default behaviour (default behaviour is to write it to a 32-bit floating point data-set) should be overridden to write it to a 64-bit floating point data-set. .TP \*(T<\fB\-t[ype]\fR\*(T> \fIoutput-type\fR Data from one or more input files are stored as one or more data sets and/or images in one HDF output file, "\fIoutfile\fR". .TP \*(T<\fB\-r[aster]\fR\*(T> Store output as a raster image set in the output file. .TP \*(T<\fB\-f[loat]\fR\*(T> Store output as a scientific data set in the output file. This is the default if the "\*(T<\fB\-r\fR\*(T>" option is not specified. .TP [ras_opts ...] .RS .TP \*(T<\fB\-e[xpand]\fR\*(T> \fIhoriz\fR \fIvert\fR [\fIdepth\fR] Expand float data via pixel replication to produce the image(s). "\fIhoriz\fR" and "\fIvert\fR" give the horizontal and vertical resolution of the image(s) to be produced; and optionally, "\fIdepth\fR" gives the number of images or depth planes (for 3D input data). .TP \*(T<\fB\-i[nterp]\fR\*(T> \fIhoriz\fR \fIvert\fR [\fIdepth\fR] Apply bilinear, or trilinear, interpolation to the float data to produce the image(s). "\fIhoriz\fR", "\fIvert\fR", and "\fIdepth\fR" must be greater than or equal to the dimensions of the original dataset. If max and min are supplied in input file, this option clips values that are greater than max or less then min, setting them to the max and min, respectively. .TP \*(T<\fB\-p[alfile]\fR\*(T> \fIpalfile\fR Store the palette with the image. Get the palette from "\fIpalfile\fR"; which may be an HDF file containing a palette, or a file containing a raw palette. .TP \*(T<\fB\-m[ean]\fR\*(T> \fImean\fR If a floating point mean value is given, the image will be scaled about the mean. The new extremes (newmax and newmin), as given by: .nf \*(T< newmax = mean + max(abs(max\-mean), abs(mean\-min)) newmin = mean \- max(abs(max\-mean), abs(mean\-min)) \*(T> .fi will be equidistant from the mean value. If no mean value is given, then the mean will be: .nf \*(T< 0.5 * (max + min) \*(T> .fi .RE .TP Notes: If the input file format is ASCII text or native floating point or native integer(32-bit, 16-bit, 8-bit), it must have the following input fields: .nf \*(T< format nplanes nrows cols max_value min_value [plane1 plane2 plane3 ...] row1 row2 row3 ... col1 col2 col3 ... data1 data2 data3 ... \*(T> .fi Where: .RS .TP format: Format designator ("TEXT", "FP32", "FP64", "IN32", "IN16", "IN08"). .TP nplanes, nrows, ncols: Dimensions are specified in the order slowest changing dimension first. ncols is dimension of the fastest changing dimension. (horizontal axis or X-axis in a 3D scale) nrows corresponds to dimension of the vertical axis or Y-axis in a 3D scale. nplanes corresponds to the slowest changing dimension i.e. dimension of the depth axis or the Z-axis in a 3D scale ("1" for 2D input). .TP max_value: Maximum data value. .TP min_value: Minimum data value. .TP plane1, plane2, plane3, ...: Scales for depth axis. .TP row1, row2, row3, ...: Scales for the vertical axis. .TP col1, col2, col3, ...: Scales for the horizontal axis. .TP data1, data2, data3, ...: The data ordered by rows, left to right and top to bottom; then optionally, ordered by planes, front to back. .RE For FP32 and FP64 input format, "format", "nplanes", "nrows", "ncols", and "nplanes" are native integers; where "format" is the integer representation of the appropriate 4-character string (0x46503332 for "FP32" and 0x46503634 for "FP64"). The remaining input fields are composed of native 32-bit floating point values for FP32 input format, or native 64-bit floating point values for FP64 input format. For IN32, IN16 and IN08 input format, "format", "nplanes", "nrows", "ncols", and "nplanes" are native integers; where "format" is the integer representation of the appropriate 4-character string. The remaining input fields are composed of native 32-bit integer values for IN32 input format, or native 16-bit integer values for IN16 input format or native 8-bit integer values for IN08 input format. .SH EXAMPLES Convert floating point data in "\*(T<\fIf1.txt\fR\*(T>" to SDS format, and store it as an SDS in HDF file "\*(T<\fIo1\fR\*(T>": .PP .nf \*(T< \fBhdfimport\fR \fIf1.txt\fR \fB\-o\fR \fIo1\fR \*(T> .fi .PP Convert floating point data in "\*(T<\fIf2.hdf\fR\*(T>" to 8-bit raster format, and store it as an RIS8 in HDF file "\*(T<\fIo2\fR\*(T>": .PP .nf \*(T< \fBhdfimport\fR \fIf2.hdf\fR \fB\-o\fR \fIo2\fR \fB\-r\fR \*(T> .fi .PP Convert floating point data in "\*(T<\fIf3.bin\fR\*(T>" to 8-bit raster format and SDS format, and store both the RIS8 and the SDS in HDF file "\*(T<\fIo3\fR\*(T>": .PP .nf \*(T< \fBhdfimport\fR \fIf3.bin\fR \fB\-o\fR \fIo3\fR \fB\-r\fR \fB\-f\fR \*(T> .fi .PP Convert floating point data in "\*(T<\fIf4\fR\*(T>" to a 500x600 raster image, and store the RIS8 in HDF file "\*(T<\fIo4\fR\*(T>". Also store a palette from "\*(T<\fIpalfile\fR\*(T>" with the image: .PP .nf \*(T< \fBhdfimport\fR \fIf4\fR \fB\-o\fR \fIo4\fR \fB\-r\fR \fB\-e\fR \fI500 600\fR \fB\-p\fR \fIpalfile\fR \*(T> .fi .PP Convert floating point data in "\*(T<\fIf5\fR\*(T>" to 200 planes of 500x600 raster images, and store the RIS8 in HDF file "\*(T<\fIo5\fR\*(T>". Also scale the image data so that it is centered about a mean value of 10.0: .PP .nf \*(T< \fBhdfimport\fR \fIf5\fR \fB\-o\fR \fIo5\fR \fB\-r\fR \fB\-i\fR \fI500 600 200\fR \fB\-m\fR \fI10.0\fR \*(T> .fi