table of contents
t.rast.series(1grass) | GRASS GIS User's Manual | t.rast.series(1grass) |
NAME¶
t.rast.series - Performs different aggregation algorithms from r.series on all or a subset of raster maps in a space time raster dataset.
KEYWORDS¶
temporal, aggregation, series, raster, time
SYNOPSIS¶
t.rast.series
t.rast.series --help
t.rast.series [-tn] input=name
method=string[,string,...]
[quantile=float[,float,...]]
[order=string[,string,...]]
[nprocs=integer] [memory=memory in MB]
[where=sql_query] output=name[,name,...]
[file_limit=integer] [--overwrite] [--help]
[--verbose] [--quiet] [--ui]
Flags:¶
Parameters:¶
- input=name [required]
-
Name of the input space time raster dataset - method=string[,string,...] [required]
-
Aggregate operation to be performed on the raster maps
Options: average, count, median, mode, minimum, min_raster, maximum, max_raster, stddev, range, sum, variance, diversity, slope, offset, detcoeff, quart1, quart3, perc90, quantile, skewness, kurtosis
Default: average - quantile=float[,float,...]
-
Quantile to calculate for method=quantile
Options: 0.0-1.0 - order=string[,string,...]
-
Sort the maps by category
Options: id, name, creator, mapset, creation_time, modification_time, start_time, end_time, north, south, west, east, min, max
Default: start_time - nprocs=integer
-
Number of threads for parallel computing
Default: 1 - memory=memory in MB
-
Maximum memory to be used (in MB)
Cache size for raster rows
Default: 300 - where=sql_query
-
WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS framework
Example: start_time > ’2001-01-01 12:30:00’ - output=name[,name,...] [required]
-
Name for output raster map(s) - file_limit=integer
-
The maximum number of open files allowed for each r.series process
Default: 1000
DESCRIPTION¶
The input of this module is a single space time raster dataset, the output is a single raster map layer. A subset of the input space time raster dataset can be selected using the where option. The sorting of the raster map layer can be set using the order option. Be aware that the order of the maps can significantly influence the result of the aggregation (e.g.: slope). By default the maps are ordered by start_time.
t.rast.series is a simple wrapper for the raster module r.series. It supports a subset of the aggregation methods of r.series.
NOTES¶
To avoid problems with too many open files, by default, the maximum number of open files is set to 1000. If the number of input raster files exceeds this number, the -z flag will be invoked. Because this will slow down processing, the user can set a higher limit with the file_limit parameter. Note that file_limit limit should not exceed the user-specific limit on open files set by your operating system. See the Wiki for more information.
Performance¶
To enable parallel processing, the user can specify the number of threads to be used with the nprocs parameter (default 1). The memory parameter (default 300 MB) can also be provided to determine the size of the buffer in MB for computation. Both parameters are passed to r.series. To take advantage of the parallelization, GRASS GIS needs to be compiled with OpenMP enabled.
EXAMPLES¶
Estimate the average temperature for the whole time series¶
Here the entire stack of input maps is considered:
t.rast.series input=tempmean_monthly output=tempmean_average method=average
Estimate the average temperature for a subset of the time series¶
Here the stack of input maps is limited to a certain period of
time:
t.rast.series input=tempmean_daily output=tempmean_season method=average \
where="start_time >= ’2012-06’ and start_time <= ’2012-08’"
Climatology: single month in a multi-annual time series¶
By considering only a single month in a multi-annual time series
the so-called climatology can be computed. Estimate average temperature for
all January maps in the time series:
t.rast.series input=tempmean_monthly \
method=average output=tempmean_january \
where="strftime(’%m’, start_time)=’01’" # equivalently, we can use t.rast.series input=tempmean_monthly \
output=tempmean_january method=average \
where="start_time = datetime(start_time, ’start of year’, ’0 month’)" # if we want also February and March averages t.rast.series input=tempmean_monthly \
output=tempmean_february method=average \
where="start_time = datetime(start_time, ’start of year’, ’1 month’)" t.rast.series input=tempmean_monthly \
output=tempmean_march method=average \
where="start_time = datetime(start_time, ’start of year’, ’2 month’)"
Generalizing a bit, we can estimate monthly climatologies for all
months by means of different methods
for i in `seq -w 1 12` ; do
for m in average stddev minimum maximum ; do
t.rast.series input=tempmean_monthly method=${m} output=tempmean_${m}_${i} \
where="strftime(’%m’, start_time)=’${i}’"
done done
SEE ALSO¶
r.series, t.create, t.info
Temporal data processing Wiki
AUTHOR¶
Sören Gebbert, Thünen Institute of Climate-Smart Agriculture
SOURCE CODE¶
Available at: t.rast.series source code (history)
Accessed: Saturday Jul 27 17:09:15 2024
Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index
© 2003-2024 GRASS Development Team, GRASS GIS 8.4.0 Reference Manual
GRASS 8.4.0 |