.\" Man page generated from reStructuredText. . .TH "GMTMATH" "1gmt" "Sep 07, 2019" "6.0.0rc4" "GMT" .SH NAME gmtmath \- Reverse Polish Notation (RPN) calculator for data tables . .nr rst2man-indent-level 0 . .de1 rstReportMargin \\$1 \\n[an-margin] level \\n[rst2man-indent-level] level margin: \\n[rst2man-indent\\n[rst2man-indent-level]] - \\n[rst2man-indent0] \\n[rst2man-indent1] \\n[rst2man-indent2] .. .de1 INDENT .\" .rstReportMargin pre: . RS \\$1 . nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin] . nr rst2man-indent-level +1 .\" .rstReportMargin post: .. .de UNINDENT . RE .\" indent \\n[an-margin] .\" old: \\n[rst2man-indent\\n[rst2man-indent-level]] .nr rst2man-indent-level -1 .\" new: \\n[rst2man-indent\\n[rst2man-indent-level]] .in \\n[rst2man-indent\\n[rst2man-indent-level]]u .. .SH SYNOPSIS .sp \fBgmt math\fP [ \fB\-A\fP\fIt_f(t)\fP[\fB+e\fP][\fB+r\fP][\fB+s\fP|\fBw\fP] ] [ \fB\-C\fP\fIcols\fP ] [ \fB\-E\fP\fIeigen\fP ] [ \fB\-I\fP ] [ \fB\-N\fP\fIn_col\fP[/\fIt_col\fP] ] [ \fB\-Q\fP ] [ \fB\-S\fP[\fBf\fP|\fBl\fP] ] [ \fB\-T\fP[\fImin\fP/\fImax\fP/\fIinc\fP[\fB+n\fP]|\fIfile\fP|\fIlist\fP] ] [ \fB\-V\fP[\fIlevel\fP] ] [ \fB\-b\fPbinary ] [ \fB\-d\fPnodata ] [ \fB\-e\fPregexp ] [ \fB\-f\fPflags ] [ \fB\-g\fPgaps ] [ \fB\-h\fPheaders ] [ \fB\-i\fPflags ] [ \fB\-o\fPflags ] [ \fB\-s\fPflags ] [ \fB\-\-PAR\fP=\fIvalue\fP ] \fIoperand\fP [ \fIoperand\fP ] \fBOPERATOR\fP [ \fIoperand\fP ] \fBOPERATOR\fP ... \fB=\fP [ \fIoutfile\fP ] .sp \fBNote:\fP No space is allowed between the option flag and the associated arguments. .SH DESCRIPTION .sp \fBmath\fP will perform operations like add, subtract, multiply, and divide on one or more table data files or constants using Reverse Polish Notation (RPN) syntax (e.g., Hewlett\-Packard calculator\-style). Arbitrarily complicated expressions may therefore be evaluated; the final result is written to an output file [or standard output]. Data operations are element\-by\-element, not matrix manipulations (except where noted). Some operators only require one operand (see below). If no data tables are used in the expression then options \fB\-T\fP, \fB\-N\fP can be set (and optionally \fB\-bo\fP to indicate the data type for binary tables). If STDIN is given, the standard input will be read and placed on the stack as if a file with that content had been given on the command line. By default, all columns except the "time" column are operated on, but this can be changed (see \fB\-C\fP). Complicated or frequently occurring expressions may be coded as a macro for future use or stored and recalled via named memory locations. .SH REQUIRED ARGUMENTS .INDENT 0.0 .TP .B \fIoperand\fP If \fIoperand\fP can be opened as a file it will be read as an ASCII (or binary, see \fB\-bi\fP) table data file. If not a file, it is interpreted as a numerical constant or a special symbol (see below). The special argument STDIN means that \fIstdin\fP will be read and placed on the stack; STDIN can appear more than once if necessary. .TP .B \fIoutfile\fP The name of a table data file that will hold the final result. If not given then the output is sent to stdout. .UNINDENT .SH OPTIONAL ARGUMENTS .INDENT 0.0 .TP \fB\-A\fP\fIt_f(t)\fP[\fB+e\fP][\fB+r\fP][\fB+s\fP|\fBw\fP] Requires \fB\-N\fP and will partially initialize a table with values from the given file \fIt_f(t)\fP containing \fIt\fP and \fIf(t)\fP only. The \fIt\fP is placed in column \fIt_col\fP while \fIf(t)\fP goes into column \fIn_col\fP \- 1 (see \fB\-N\fP). Append \fB+r\fP to only place \fIf(t)\fP and leave the left hand side of the matrix equation alone. If used with operators LSQFIT and SVDFIT you can optionally append the modifier \fB+e\fP which will instead evaluate the solution and write a data set with four columns: t, f(t), the model solution at t, and the the residuals at t, respectively [Default writes one column with model coefficients]. Append \fB+w\fP if \fIt_f(t\fP has a third column with weights, or append \fB+s\fP if \fIt_f(t)\fP has a third column with 1\-sigma. In those two cases we find the weighted solution. The weights (or sigmas) will be output as the last column when \fB+e\fP is in effect. .UNINDENT .INDENT 0.0 .TP \fB\-C\fP\fIcols\fP Select the columns that will be operated on until next occurrence of \fB\-C\fP\&. List columns separated by commas; ranges like 1,3\-5,7 are allowed, plus \-Cx can be used for \-C0 and \-Cy can be used for \-C1. \fB\-C\fP (no arguments) resets the default action of using all columns except time column (see \fB\-N\fP). \fB\-Ca\fP selects all columns, including time column, while \fB\-Cr\fP reverses (toggles) the current choices. When \fB\-C\fP is in effect it also controls which columns from a file will be placed on the stack. .UNINDENT .INDENT 0.0 .TP \fB\-E\fP\fIeigen\fP Sets the minimum eigenvalue used by operators LSQFIT and SVDFIT [1e\-7]. Smaller eigenvalues are set to zero and will not be considered in the solution. .UNINDENT .INDENT 0.0 .TP \fB\-I\fP Reverses the output row sequence from ascending time to descending [ascending]. .UNINDENT .INDENT 0.0 .TP \fB\-N\fP\fIn_col\fP[/\fIt_col\fP] Select the number of columns and optionally the column number that contains the "time" variable [0]. Columns are numbered starting at 0 [2/0]. If input files are specified then \fB\-N\fP will add any missing columns. .UNINDENT .INDENT 0.0 .TP \fB\-Q\fP Quick mode for scalar calculation. Shorthand for \fB\-Ca\fP \fB\-N\fP1/0 \fB\-T\fP0/0/1. In this mode, constants may have plot units (i.e., c, i, p) and if so the final answer will be reported in the unit set by PROJ_LENGTH_UNIT\&. .UNINDENT .INDENT 0.0 .TP \fB\-S\fP[\fBf\fP|\fBl\fP] Only report the first or last row of the results [Default is all rows]. This is useful if you have computed a statistic (say the \fBMODE\fP) and only want to report a single number instead of numerous records with identical values. Append \fBl\fP to get the last row and \fBf\fP to get the first row only [Default]. .UNINDENT .INDENT 0.0 .TP \fB\-T\fP[\fImin\fP/\fImax\fP/\fIinc\fP[\fB+n\fP]|\fIfile\fP|\fIlist\fP] Required when no input files are given. Builds an array for the "time" column (see \fB\-N\fP). If there is no time column (i.e., your input has only data columns), give \fB\-T\fP with no arguments; this also implies \fB\-Ca\fP\&. For details on array creation, see \fI\%Generate 1D Array\fP\&. .UNINDENT .INDENT 0.0 .TP \fB\-V\fP[\fIlevel\fP] (more ...) Select verbosity level [c]. .UNINDENT .INDENT 0.0 .TP \fB\-bi\fP[\fIncols\fP][\fBt\fP] (more ...) Select native binary format for primary input. .UNINDENT .INDENT 0.0 .TP \fB\-bo\fP[\fIncols\fP][\fItype\fP] (more ...) Select native binary output. [Default is same as input, but see \fB\-o\fP] .UNINDENT .INDENT 0.0 .TP \fB\-d\fP[\fBi\fP|\fBo\fP]\fInodata\fP (more ...) Replace input columns that equal \fInodata\fP with NaN and do the reverse on output. .UNINDENT .INDENT 0.0 .TP \fB\-e\fP[\fB~\fP]\fI"pattern"\fP \fB|\fP \fB\-e\fP[\fB~\fP]/\fIregexp\fP/[\fBi\fP] (more ...) Only accept data records that match the given pattern. .UNINDENT .INDENT 0.0 .TP \fB\-f\fP[\fBi\fP|\fBo\fP]\fIcolinfo\fP (more ...) Specify data types of input and/or output columns. .UNINDENT .INDENT 0.0 .TP \fB\-g\fP[\fBa\fP]\fBx\fP|\fBy\fP|\fBd\fP|\fBX\fP|\fBY\fP|\fBD\fP|[\fIcol\fP]\fBz\fP\fIgap\fP[\fBu\fP][\fB+n\fP|\fBp\fP] (more ...) Determine data gaps and line breaks. .UNINDENT .INDENT 0.0 .TP \fB\-h\fP[\fBi\fP|\fBo\fP][\fIn\fP][\fB+c\fP][\fB+d\fP][\fB+r\fP\fIremark\fP][\fB+r\fP\fItitle\fP] (more ...) Skip or produce header record(s). .UNINDENT .INDENT 0.0 .TP \fB\-i\fP\fIcols\fP[\fB+l\fP][\fB+s\fP\fIscale\fP][\fB+o\fP\fIoffset\fP][,\fI\&...\fP][,\fIt\fP[\fIword\fP]] (more ...) Select input columns and transformations (0 is first column, \fIt\fP is trailing text, append \fIword\fP to read one word only). .UNINDENT .INDENT 0.0 .TP \fB\-o\fP\fIcols\fP[,...][\fIt\fP[\fIword\fP]] (more ...) Select output columns (0 is first column; \fIt\fP is trailing text, append \fIword\fP to write one word only). .UNINDENT .INDENT 0.0 .TP \fB\-s\fP[\fIcols\fP][\fB+a\fP|\fB+r\fP] (more ...) Set handling of NaN records. .UNINDENT .INDENT 0.0 .TP \fB\-^\fP or just \fB\-\fP Print a short message about the syntax of the command, then exits (NOTE: on Windows just use \fB\-\fP). .TP \fB\-+\fP or just \fB+\fP Print an extensive usage (help) message, including the explanation of any module\-specific option (but not the GMT common options), then exits. .TP \fB\-?\fP or no arguments Print a complete usage (help) message, including the explanation of all options, then exits. .TP \fB\-\-PAR\fP=\fIvalue\fP Temporarily override a GMT default setting; repeatable. See /gmt.conf for parameters. .UNINDENT .SH GENERATE 1D ARRAY .sp Make an evenly spaced coordinate array from \fImin\fP to \fImax\fP in steps of \fIinc\fP\&. Append \fB+b\fP if we should take log2 of \fImin\fP and \fImax\fP and build an equidistant log2\-array using \fIinc\fP integer increments in log2. Append \fB+l\fP if we should take log10 of \fImin\fP and \fImax\fP and build an array where \fIinc\fP can be 1 (every magnitude), 2, (1, 2, 5 times magnitude) or 3 (1\-9 times magnitude). For less than every magnitude, use a negative integer \fIinc\fP\&. Append \fB+n\fP if \fIinc\fP is meant to indicate the number of equidistant coordinates instead. Alternatively, give a \fIfile\fP with output coordinates in the first column, or provide a comma\-separated \fIlist\fP of coordinates. If you only want a \fIsingle\fP value then you must append a comma to distinguish the list from the setting of \fIinc\fP\&. .sp If the module allows you to set up an absolute time series, append a valid time unit from the list \fBy\fPear, m\fBo\fPnth, \fBw\fPeek, \fBd\fPay, \fBh\fPour, \fBm\fPinute, and \fBs\fPecond to the given increment; add \fB+t\fP to ensure time column (or use \fB\-f\fP) Note: The internal time unit is still controlled independently by TIME_UNIT\&. Some modules allow for \fB+a\fP which will paste the coordinate array to the output table. .sp Likewise, if the module allows you to set up a spatial distance series (with distance computed from the first two data columns), specify the increment as \fIinc\fP[\fIunit\fP] with a geospatial distance unit from the list \fBd\fPegree (arc), \fBm\fPinute (arc), \fBs\fPecond (arc), m\fBe\fPter, \fBf\fPoot, \fBk\fPilometer, \fBM\fPiles (statute), \fBn\fPautical miles, or s\fBu\fPrvey foot; see \fB\-j\fP for calculation mode. For Cartesian distances, you must use the special unit \fBc\fP\&. .sp Finally, if you are only providing an increment and obtain \fImin\fP and \fImax\fP from the data, then it is possible (\fImax\fP \- \fImin\fP)/\fIinc\fP is not an integer, as required. If so then \fIinc\fP will be adjusted to accordingly. Alternatively, append \fB+e\fP to keep \fIinc\fP exact and adjust \fImax\fP instead. .SH OPERATORS .sp Choose among the following 185 operators. Here, "args" are the number of input and output arguments. .TS center; |l|l|l|. _ T{ Operator T} T{ args T} T{ Returns T} _ T{ \fBABS\fP T} T{ 1 1 T} T{ abs (A) T} _ T{ \fBACOS\fP T} T{ 1 1 T} T{ acos (A) T} _ T{ \fBACOSH\fP T} T{ 1 1 T} T{ acosh (A) T} _ T{ \fBACSC\fP T} T{ 1 1 T} T{ acsc (A) T} _ T{ \fBACOT\fP T} T{ 1 1 T} T{ acot (A) T} _ T{ \fBADD\fP T} T{ 2 1 T} T{ A + B T} _ T{ \fBAND\fP T} T{ 2 1 T} T{ B if A == NaN, else A T} _ T{ \fBASEC\fP T} T{ 1 1 T} T{ asec (A) T} _ T{ \fBASIN\fP T} T{ 1 1 T} T{ asin (A) T} _ T{ \fBASINH\fP T} T{ 1 1 T} T{ asinh (A) T} _ T{ \fBATAN\fP T} T{ 1 1 T} T{ atan (A) T} _ T{ \fBATAN2\fP T} T{ 2 1 T} T{ atan2 (A, B) T} _ T{ \fBATANH\fP T} T{ 1 1 T} T{ atanh (A) T} _ T{ \fBBCDF\fP T} T{ 3 1 T} T{ Binomial cumulative distribution function for p = A, n = B, and x = C T} _ T{ \fBBPDF\fP T} T{ 3 1 T} T{ Binomial probability density function for p = A, n = B, and x = C T} _ T{ \fBBEI\fP T} T{ 1 1 T} T{ bei (A) T} _ T{ \fBBER\fP T} T{ 1 1 T} T{ ber (A) T} _ T{ \fBBITAND\fP T} T{ 2 1 T} T{ A & B (bitwise AND operator) T} _ T{ \fBBITLEFT\fP T} T{ 2 1 T} T{ A << B (bitwise left\-shift operator) T} _ T{ \fBBITNOT\fP T} T{ 1 1 T} T{ ~A (bitwise NOT operator, i.e., return two\(aqs complement) T} _ T{ \fBBITOR\fP T} T{ 2 1 T} T{ A | B (bitwise OR operator) T} _ T{ \fBBITRIGHT\fP T} T{ 2 1 T} T{ A >> B (bitwise right\-shift operator) T} _ T{ \fBBITTEST\fP T} T{ 2 1 T} T{ 1 if bit B of A is set, else 0 (bitwise TEST operator) T} _ T{ \fBBITXOR\fP T} T{ 2 1 T} T{ A ^ B (bitwise XOR operator) T} _ T{ \fBCEIL\fP T} T{ 1 1 T} T{ ceil (A) (smallest integer >= A) T} _ T{ \fBCHICRIT\fP T} T{ 2 1 T} T{ Chi\-squared distribution critical value for alpha = A and nu = B T} _ T{ \fBCHICDF\fP T} T{ 2 1 T} T{ Chi\-squared cumulative distribution function for chi2 = A and nu = B T} _ T{ \fBCHIPDF\fP T} T{ 2 1 T} T{ Chi\-squared probability density function for chi2 = A and nu = B T} _ T{ \fBCOL\fP T} T{ 1 1 T} T{ Places column A on the stack T} _ T{ \fBCOMB\fP T} T{ 2 1 T} T{ Combinations n_C_r, with n = A and r = B T} _ T{ \fBCORRCOEFF\fP T} T{ 2 1 T} T{ Correlation coefficient r(A, B) T} _ T{ \fBCOS\fP T} T{ 1 1 T} T{ cos (A) (A in radians) T} _ T{ \fBCOSD\fP T} T{ 1 1 T} T{ cos (A) (A in degrees) T} _ T{ \fBCOSH\fP T} T{ 1 1 T} T{ cosh (A) T} _ T{ \fBCOT\fP T} T{ 1 1 T} T{ cot (A) (A in radians) T} _ T{ \fBCOTD\fP T} T{ 1 1 T} T{ cot (A) (A in degrees) T} _ T{ \fBCSC\fP T} T{ 1 1 T} T{ csc (A) (A in radians) T} _ T{ \fBCSCD\fP T} T{ 1 1 T} T{ csc (A) (A in degrees) T} _ T{ \fBDDT\fP T} T{ 1 1 T} T{ d(A)/dt Central 1st derivative T} _ T{ \fBD2DT2\fP T} T{ 1 1 T} T{ d^2(A)/dt^2 2nd derivative T} _ T{ \fBD2R\fP T} T{ 1 1 T} T{ Converts Degrees to Radians T} _ T{ \fBDENAN\fP T} T{ 2 1 T} T{ Replace NaNs in A with values from B T} _ T{ \fBDILOG\fP T} T{ 1 1 T} T{ dilog (A) T} _ T{ \fBDIFF\fP T} T{ 1 1 T} T{ Forward difference between adjacent elements of A (A[1]\-A[0], A[2]\-A[1], ..., NaN) T} _ T{ \fBDIV\fP T} T{ 2 1 T} T{ A / B T} _ T{ \fBDUP\fP T} T{ 1 2 T} T{ Places duplicate of A on the stack T} _ T{ \fBECDF\fP T} T{ 2 1 T} T{ Exponential cumulative distribution function for x = A and lambda = B T} _ T{ \fBECRIT\fP T} T{ 2 1 T} T{ Exponential distribution critical value for alpha = A and lambda = B T} _ T{ \fBEPDF\fP T} T{ 2 1 T} T{ Exponential probability density function for x = A and lambda = B T} _ T{ \fBERF\fP T} T{ 1 1 T} T{ Error function erf (A) T} _ T{ \fBERFC\fP T} T{ 1 1 T} T{ Complementary Error function erfc (A) T} _ T{ \fBERFINV\fP T} T{ 1 1 T} T{ Inverse error function of A T} _ T{ \fBEQ\fP T} T{ 2 1 T} T{ 1 if A == B, else 0 T} _ T{ \fBEXCH\fP T} T{ 2 2 T} T{ Exchanges A and B on the stack T} _ T{ \fBEXP\fP T} T{ 1 1 T} T{ exp (A) T} _ T{ \fBFACT\fP T} T{ 1 1 T} T{ A! (A factorial) T} _ T{ \fBFCDF\fP T} T{ 3 1 T} T{ F cumulative distribution function for F = A, nu1 = B, and nu2 = C T} _ T{ \fBFCRIT\fP T} T{ 3 1 T} T{ F distribution critical value for alpha = A, nu1 = B, and nu2 = C T} _ T{ \fBFLIPUD\fP T} T{ 1 1 T} T{ Reverse order of each column T} _ T{ \fBFLOOR\fP T} T{ 1 1 T} T{ floor (A) (greatest integer <= A) T} _ T{ \fBFMOD\fP T} T{ 2 1 T} T{ A % B (remainder after truncated division) T} _ T{ \fBFPDF\fP T} T{ 3 1 T} T{ F probability density function for F = A, nu1 = B, and nu2 = C T} _ T{ \fBGE\fP T} T{ 2 1 T} T{ 1 if A >= B, else 0 T} _ T{ \fBGT\fP T} T{ 2 1 T} T{ 1 if A > B, else 0 T} _ T{ \fBHYPOT\fP T} T{ 2 1 T} T{ hypot (A, B) = sqrt (A*A + B*B) T} _ T{ \fBI0\fP T} T{ 1 1 T} T{ Modified Bessel function of A (1st kind, order 0) T} _ T{ \fBI1\fP T} T{ 1 1 T} T{ Modified Bessel function of A (1st kind, order 1) T} _ T{ \fBIFELSE\fP T} T{ 3 1 T} T{ B if A != 0, else C T} _ T{ \fBIN\fP T} T{ 2 1 T} T{ Modified Bessel function of A (1st kind, order B) T} _ T{ \fBINRANGE\fP T} T{ 3 1 T} T{ 1 if B <= A <= C, else 0 T} _ T{ \fBINT\fP T} T{ 1 1 T} T{ Numerically integrate A T} _ T{ \fBINV\fP T} T{ 1 1 T} T{ 1 / A T} _ T{ \fBISFINITE\fP T} T{ 1 1 T} T{ 1 if A is finite, else 0 T} _ T{ \fBISNAN\fP T} T{ 1 1 T} T{ 1 if A == NaN, else 0 T} _ T{ \fBJ0\fP T} T{ 1 1 T} T{ Bessel function of A (1st kind, order 0) T} _ T{ \fBJ1\fP T} T{ 1 1 T} T{ Bessel function of A (1st kind, order 1) T} _ T{ \fBJN\fP T} T{ 2 1 T} T{ Bessel function of A (1st kind, order B) T} _ T{ \fBK0\fP T} T{ 1 1 T} T{ Modified Kelvin function of A (2nd kind, order 0) T} _ T{ \fBK1\fP T} T{ 1 1 T} T{ Modified Bessel function of A (2nd kind, order 1) T} _ T{ \fBKN\fP T} T{ 2 1 T} T{ Modified Bessel function of A (2nd kind, order B) T} _ T{ \fBKEI\fP T} T{ 1 1 T} T{ kei (A) T} _ T{ \fBKER\fP T} T{ 1 1 T} T{ ker (A) T} _ T{ \fBKURT\fP T} T{ 1 1 T} T{ Kurtosis of A T} _ T{ \fBLCDF\fP T} T{ 1 1 T} T{ Laplace cumulative distribution function for z = A T} _ T{ \fBLCRIT\fP T} T{ 1 1 T} T{ Laplace distribution critical value for alpha = A T} _ T{ \fBLE\fP T} T{ 2 1 T} T{ 1 if A <= B, else 0 T} _ T{ \fBLMSSCL\fP T} T{ 1 1 T} T{ LMS scale estimate (LMS STD) of A T} _ T{ \fBLMSSCLW\fP T} T{ 2 1 T} T{ Weighted LMS scale estimate (LMS STD) of A for weights in B T} _ T{ \fBLOG\fP T} T{ 1 1 T} T{ log (A) (natural log) T} _ T{ \fBLOG10\fP T} T{ 1 1 T} T{ log10 (A) (base 10) T} _ T{ \fBLOG1P\fP T} T{ 1 1 T} T{ log (1+A) (accurate for small A) T} _ T{ \fBLOG2\fP T} T{ 1 1 T} T{ log2 (A) (base 2) T} _ T{ \fBLOWER\fP T} T{ 1 1 T} T{ The lowest (minimum) value of A T} _ T{ \fBLPDF\fP T} T{ 1 1 T} T{ Laplace probability density function for z = A T} _ T{ \fBLRAND\fP T} T{ 2 1 T} T{ Laplace random noise with mean A and std. deviation B T} _ T{ \fBLSQFIT\fP T} T{ 1 0 T} T{ Let current table be [A | b] return least squares solution x = A \e b T} _ T{ \fBLT\fP T} T{ 2 1 T} T{ 1 if A < B, else 0 T} _ T{ \fBMAD\fP T} T{ 1 1 T} T{ Median Absolute Deviation (L1 STD) of A T} _ T{ \fBMADW\fP T} T{ 2 1 T} T{ Weighted Median Absolute Deviation (L1 STD) of A for weights in B T} _ T{ \fBMAX\fP T} T{ 2 1 T} T{ Maximum of A and B T} _ T{ \fBMEAN\fP T} T{ 1 1 T} T{ Mean value of A T} _ T{ \fBMEANW\fP T} T{ 2 1 T} T{ Weighted mean value of A for weights in B T} _ T{ \fBMEDIAN\fP T} T{ 1 1 T} T{ Median value of A T} _ T{ \fBMEDIANW\fP T} T{ 2 1 T} T{ Weighted median value of A for weights in B T} _ T{ \fBMIN\fP T} T{ 2 1 T} T{ Minimum of A and B T} _ T{ \fBMOD\fP T} T{ 2 1 T} T{ A mod B (remainder after floored division) T} _ T{ \fBMODE\fP T} T{ 1 1 T} T{ Mode value (Least Median of Squares) of A T} _ T{ \fBMODEW\fP T} T{ 2 1 T} T{ Weighted mode value (Least Median of Squares) of A for weights in B T} _ T{ \fBMUL\fP T} T{ 2 1 T} T{ A * B T} _ T{ \fBNAN\fP T} T{ 2 1 T} T{ NaN if A == B, else A T} _ T{ \fBNEG\fP T} T{ 1 1 T} T{ \-A T} _ T{ \fBNEQ\fP T} T{ 2 1 T} T{ 1 if A != B, else 0 T} _ T{ \fBNORM\fP T} T{ 1 1 T} T{ Normalize (A) so max(A)\-min(A) = 1 T} _ T{ \fBNOT\fP T} T{ 1 1 T} T{ NaN if A == NaN, 1 if A == 0, else 0 T} _ T{ \fBNRAND\fP T} T{ 2 1 T} T{ Normal, random values with mean A and std. deviation B T} _ T{ \fBOR\fP T} T{ 2 1 T} T{ NaN if B == NaN, else A T} _ T{ \fBPCDF\fP T} T{ 2 1 T} T{ Poisson cumulative distribution function for x = A and lambda = B T} _ T{ \fBPERM\fP T} T{ 2 1 T} T{ Permutations n_P_r, with n = A and r = B T} _ T{ \fBPPDF\fP T} T{ 2 1 T} T{ Poisson distribution P(x,lambda), with x = A and lambda = B T} _ T{ \fBPLM\fP T} T{ 3 1 T} T{ Associated Legendre polynomial P(A) degree B order C T} _ T{ \fBPLMg\fP T} T{ 3 1 T} T{ Normalized associated Legendre polynomial P(A) degree B order C (geophysical convention) T} _ T{ \fBPOP\fP T} T{ 1 0 T} T{ Delete top element from the stack T} _ T{ \fBPOW\fP T} T{ 2 1 T} T{ A ^ B T} _ T{ \fBPQUANT\fP T} T{ 2 1 T} T{ The B\(aqth quantile (0\-100%) of A T} _ T{ \fBPQUANTW\fP T} T{ 3 1 T} T{ The C\(aqth weighted quantile (0\-100%) of A for weights in B T} _ T{ \fBPSI\fP T} T{ 1 1 T} T{ Psi (or Digamma) of A T} _ T{ \fBPV\fP T} T{ 3 1 T} T{ Legendre function Pv(A) of degree v = real(B) + imag(C) T} _ T{ \fBQV\fP T} T{ 3 1 T} T{ Legendre function Qv(A) of degree v = real(B) + imag(C) T} _ T{ \fBR2\fP T} T{ 2 1 T} T{ R2 = A^2 + B^2 T} _ T{ \fBR2D\fP T} T{ 1 1 T} T{ Convert radians to degrees T} _ T{ \fBRAND\fP T} T{ 2 1 T} T{ Uniform random values between A and B T} _ T{ \fBRCDF\fP T} T{ 1 1 T} T{ Rayleigh cumulative distribution function for z = A T} _ T{ \fBRCRIT\fP T} T{ 1 1 T} T{ Rayleigh distribution critical value for alpha = A T} _ T{ \fBRINT\fP T} T{ 1 1 T} T{ rint (A) (round to integral value nearest to A) T} _ T{ \fBRMS\fP T} T{ 1 1 T} T{ Root\-mean\-square of A T} _ T{ \fBRMSW\fP T} T{ 1 1 T} T{ Weighted root\-mean\-square of A for weights in B T} _ T{ \fBRPDF\fP T} T{ 1 1 T} T{ Rayleigh probability density function for z = A T} _ T{ \fBROLL\fP T} T{ 2 0 T} T{ Cyclicly shifts the top A stack items by an amount B T} _ T{ \fBROTT\fP T} T{ 2 1 T} T{ Rotate A by the (constant) shift B in the t\-direction T} _ T{ \fBSEC\fP T} T{ 1 1 T} T{ sec (A) (A in radians) T} _ T{ \fBSECD\fP T} T{ 1 1 T} T{ sec (A) (A in degrees) T} _ T{ \fBSIGN\fP T} T{ 1 1 T} T{ sign (+1 or \-1) of A T} _ T{ \fBSIN\fP T} T{ 1 1 T} T{ sin (A) (A in radians) T} _ T{ \fBSINC\fP T} T{ 1 1 T} T{ sinc (A) (sin (pi*A)/(pi*A)) T} _ T{ \fBSIND\fP T} T{ 1 1 T} T{ sin (A) (A in degrees) T} _ T{ \fBSINH\fP T} T{ 1 1 T} T{ sinh (A) T} _ T{ \fBSKEW\fP T} T{ 1 1 T} T{ Skewness of A T} _ T{ \fBSQR\fP T} T{ 1 1 T} T{ A^2 T} _ T{ \fBSQRT\fP T} T{ 1 1 T} T{ sqrt (A) T} _ T{ \fBSTD\fP T} T{ 1 1 T} T{ Standard deviation of A T} _ T{ \fBSTDW\fP T} T{ 2 1 T} T{ Weighted standard deviation of A for weights in B T} _ T{ \fBSTEP\fP T} T{ 1 1 T} T{ Heaviside step function H(A) T} _ T{ \fBSTEPT\fP T} T{ 1 1 T} T{ Heaviside step function H(t\-A) T} _ T{ \fBSUB\fP T} T{ 2 1 T} T{ A \- B T} _ T{ \fBSUM\fP T} T{ 1 1 T} T{ Cumulative sum of A T} _ T{ \fBTAN\fP T} T{ 1 1 T} T{ tan (A) (A in radians) T} _ T{ \fBTAND\fP T} T{ 1 1 T} T{ tan (A) (A in degrees) T} _ T{ \fBTANH\fP T} T{ 1 1 T} T{ tanh (A) T} _ T{ \fBTAPER\fP T} T{ 1 1 T} T{ Unit weights cosine\-tapered to zero within A of end margins T} _ T{ \fBTN\fP T} T{ 2 1 T} T{ Chebyshev polynomial Tn(\-1