## table of contents

tclrep/machineparameters(3tcl) | tclrep | tclrep/machineparameters(3tcl) |

# NAME¶

tclrep/machineparameters - Compute double precision machine parameters.# SYNOPSIS¶

package require**Tcl 8.4**

package require **snit **

package require **math::machineparameters 0.1**

**machineparameters** create *objectname*
?*options*...?

*objectname* **configure** ?*options*...?

*objectname* **cget** *opt*

*objectname* **destroy**

*objectname* **compute**

*objectname* **get** *key*

*objectname* **tostring**

*objectname* **print**

# DESCRIPTION¶

The*math::machineparameters*package is the Tcl equivalent of the DLAMCH LAPACK function. In floating point systems, a floating point number is represented by

x = +/- d1 d2 ... dt basis^e

0 <= di <= basis - 1, i = 1, t

- t is the size of the mantissa
- basis is the basis (the "radix")

The **compute** method computes all machine parameters. Then,
the **get** method can be used to get each parameter. The **print**
method prints a report on standard output.

# EXAMPLE¶

In the following example, one compute the parameters of a desktop under Linux with the following Tcl 8.4.19 properties :% parray tcl_platform tcl_platform(byteOrder) = littleEndian tcl_platform(machine) = i686 tcl_platform(os) = Linux tcl_platform(osVersion) = 2.6.24-19-generic tcl_platform(platform) = unix tcl_platform(tip,268) = 1 tcl_platform(tip,280) = 1 tcl_platform(user) = <username> tcl_platform(wordSize) = 4

set pp [machineparameters create %AUTO%] $pp compute $pp print $pp destroy

Machine parameters Epsilon : 1.11022302463e-16 Beta : 2 Rounding : proper Mantissa : 53 Maximum exponent : 1024 Minimum exponent : -1021 Overflow threshold : 8.98846567431e+307 Underflow threshold : 2.22507385851e-308

Epsilon = 1.11022302462515654E-016 Safe minimum = 2.22507385850720138E-308 Base = 2.0000000000000000 Precision = 2.22044604925031308E-016 Number of digits in mantissa = 53.000000000000000 Rounding mode = 1.00000000000000000 Minimum exponent = -1021.0000000000000 Underflow threshold = 2.22507385850720138E-308 Largest exponent = 1024.0000000000000 Overflow threshold = 1.79769313486231571E+308 Reciprocal of safe minimum = 4.49423283715578977E+307

set pp [machineparameters create %AUTO%] $pp compute set eps [$pp get -epsilon] $pp destroy

# REFERENCES¶

- "Algorithms to Reveal Properties of Floating-Point Arithmetic", Michael A. Malcolm, Stanford University, Communications of the ACM, Volume 15 , Issue 11 (November 1972), Pages: 949 - 951
- "More on Algorithms that Reveal Properties of Floating, Point Arithmetic Units", W. Morven Gentleman, University of Waterloo, Scott B. Marovich, Purdue University, Communications of the ACM, Volume 17 , Issue 5 (May 1974), Pages: 276 - 277

# CLASS API¶

**machineparameters**create*objectname*?*options*...?- The command creates a new machineparameters object and returns the fully qualified name of the object command as its result.

**-verbose***verbose*- Set this option to 1 to enable verbose logging. This option is mainly for
debug purposes. The default value of
*verbose*is 0.

# OBJECT API¶

*objectname***configure**?*options*...?- The command configure the options of the object
*objectname*. The options are the same as the static method**create**. *objectname***cget***opt*- Returns the value of the option which name is
*opt*. The options are the same as the method**create**and**configure**. *objectname***destroy**- Destroys the object
*objectname*. *objectname***compute**- Computes the machine parameters.
*objectname***get***key*- Returns the value corresponding with given key. The following is the list of available keys.

- -epsilon : smallest value so that 1+epsilon>1 is false
- -rounding : The rounding mode used on the machine. The rounding occurs when more than t digits would be required to represent the number. Two modes can be determined with the current system : "chop" means than only t digits are kept, no matter the value of the number "proper" means that another rounding mode is used, be it "round to nearest", "round up", "round down".
- -basis : the basis of the floating-point representation. The basis is usually 2, i.e. binary representation (for example IEEE 754 machines), but some machines (like HP calculators for example) uses 10, or 16, etc...
- -mantissa : the number of bits in the mantissa
- -exponentmax : the largest positive exponent before overflow occurs
- -exponentmin : the largest negative exponent before (gradual) underflow occurs
- -vmax : largest positive value before overflow occurs
- -vmin : largest negative value before (gradual) underflow occurs

*objectname***tostring**- Return a report for machine parameters.
*objectname***print**- Print machine parameters on standard output.

# BUGS, IDEAS, FEEDBACK¶

This document, and the package it describes, will undoubtedly contain bugs and other problems. Please report such in the category*math*of the

*Tcllib Trackers*[http://core.tcl.tk/tcllib/reportlist]. Please also report any ideas for enhancements you may have for either package and/or documentation.

When proposing code changes, please provide *unified diffs*,
i.e the output of **diff -u**.

Note further that *attachments* are strongly preferred over
inlined patches. Attachments can be made by going to the **Edit** form of
the ticket immediately after its creation, and then using the left-most
button in the secondary navigation bar.

# COPYRIGHT¶

Copyright (c) 2008 Michael Baudin <michael.baudin@sourceforge.net>

1.0 | tcllib |