.\" Automatically generated by Pod::Man 4.10 (Pod::Simple 3.35) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "EVP_PKEY_CTX_CTRL 3SSL" .TH EVP_PKEY_CTX_CTRL 3SSL "2021-03-22" "1.1.1d" "OpenSSL" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" EVP_PKEY_CTX_ctrl, EVP_PKEY_CTX_ctrl_str, EVP_PKEY_CTX_ctrl_uint64, EVP_PKEY_CTX_md, EVP_PKEY_CTX_set_signature_md, EVP_PKEY_CTX_get_signature_md, EVP_PKEY_CTX_set_mac_key, EVP_PKEY_CTX_set_rsa_padding, EVP_PKEY_CTX_get_rsa_padding, EVP_PKEY_CTX_set_rsa_pss_saltlen, EVP_PKEY_CTX_get_rsa_pss_saltlen, EVP_PKEY_CTX_set_rsa_keygen_bits, EVP_PKEY_CTX_set_rsa_keygen_pubexp, EVP_PKEY_CTX_set_rsa_keygen_primes, EVP_PKEY_CTX_set_rsa_mgf1_md, EVP_PKEY_CTX_get_rsa_mgf1_md, EVP_PKEY_CTX_set_rsa_oaep_md, EVP_PKEY_CTX_get_rsa_oaep_md, EVP_PKEY_CTX_set0_rsa_oaep_label, EVP_PKEY_CTX_get0_rsa_oaep_label, EVP_PKEY_CTX_set_dsa_paramgen_bits, EVP_PKEY_CTX_set_dh_paramgen_prime_len, EVP_PKEY_CTX_set_dh_paramgen_subprime_len, EVP_PKEY_CTX_set_dh_paramgen_generator, EVP_PKEY_CTX_set_dh_paramgen_type, EVP_PKEY_CTX_set_dh_rfc5114, EVP_PKEY_CTX_set_dhx_rfc5114, EVP_PKEY_CTX_set_dh_pad, EVP_PKEY_CTX_set_dh_nid, EVP_PKEY_CTX_set_dh_kdf_type, EVP_PKEY_CTX_get_dh_kdf_type, EVP_PKEY_CTX_set0_dh_kdf_oid, EVP_PKEY_CTX_get0_dh_kdf_oid, EVP_PKEY_CTX_set_dh_kdf_md, EVP_PKEY_CTX_get_dh_kdf_md, EVP_PKEY_CTX_set_dh_kdf_outlen, EVP_PKEY_CTX_get_dh_kdf_outlen, EVP_PKEY_CTX_set0_dh_kdf_ukm, EVP_PKEY_CTX_get0_dh_kdf_ukm, EVP_PKEY_CTX_set_ec_paramgen_curve_nid, EVP_PKEY_CTX_set_ec_param_enc, EVP_PKEY_CTX_set_ecdh_cofactor_mode, EVP_PKEY_CTX_get_ecdh_cofactor_mode, EVP_PKEY_CTX_set_ecdh_kdf_type, EVP_PKEY_CTX_get_ecdh_kdf_type, EVP_PKEY_CTX_set_ecdh_kdf_md, EVP_PKEY_CTX_get_ecdh_kdf_md, EVP_PKEY_CTX_set_ecdh_kdf_outlen, EVP_PKEY_CTX_get_ecdh_kdf_outlen, EVP_PKEY_CTX_set0_ecdh_kdf_ukm, EVP_PKEY_CTX_get0_ecdh_kdf_ukm, EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len \&\- algorithm specific control operations .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& #include \& \& int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype, \& int cmd, int p1, void *p2); \& int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype, \& int cmd, uint64_t value); \& int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, \& const char *value); \& \& int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md); \& \& int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); \& int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd); \& \& int EVP_PKEY_CTX_set_mac_key(EVP_PKEY_CTX *ctx, unsigned char *key, int len); \& \& #include \& \& int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad); \& int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad); \& int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int len); \& int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *len); \& int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits); \& int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp); \& int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes); \& int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); \& int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md); \& int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); \& int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md); \& int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char *label, int len); \& int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label); \& \& #include \& \& int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits); \& \& #include \& \& int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len); \& int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len); \& int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen); \& int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type); \& int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad); \& int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid); \& int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114); \& int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114); \& int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int kdf); \& int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx); \& int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT *oid); \& int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT **oid); \& int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); \& int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md); \& int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int len); \& int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len); \& int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len); \& int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm); \& \& #include \& \& int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid); \& int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc); \& int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode); \& int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx); \& int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX *ctx, int kdf); \& int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX *ctx); \& int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); \& int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md); \& int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int len); \& int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len); \& int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len); \& int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm); \& \& int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len); \& int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id); \& int EVP_PKEY_CTX_get1_id_len(EVP_PKEY_CTX *ctx, size_t *id_len); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" The function \fBEVP_PKEY_CTX_ctrl()\fR sends a control operation to the context \&\fBctx\fR. The key type used must match \fBkeytype\fR if it is not \-1. The parameter \&\fBoptype\fR is a mask indicating which operations the control can be applied to. The control command is indicated in \fBcmd\fR and any additional arguments in \&\fBp1\fR and \fBp2\fR. .PP For \fBcmd\fR = \fB\s-1EVP_PKEY_CTRL_SET_MAC_KEY\s0\fR, \fBp1\fR is the length of the \s-1MAC\s0 key, and \fBp2\fR is \s-1MAC\s0 key. This is used by Poly1305, SipHash, \s-1HMAC\s0 and \s-1CMAC.\s0 .PP Applications will not normally call \fBEVP_PKEY_CTX_ctrl()\fR directly but will instead call one of the algorithm specific macros below. .PP The function \fBEVP_PKEY_CTX_ctrl_uint64()\fR is a wrapper that directly passes a uint64 value as \fBp2\fR to \fBEVP_PKEY_CTX_ctrl()\fR. .PP The function \fBEVP_PKEY_CTX_ctrl_str()\fR allows an application to send an algorithm specific control operation to a context \fBctx\fR in string form. This is intended to be used for options specified on the command line or in text files. The commands supported are documented in the openssl utility command line pages for the option \fB\-pkeyopt\fR which is supported by the \&\fBpkeyutl\fR, \fBgenpkey\fR and \fBreq\fR commands. .PP The function \fBEVP_PKEY_CTX_md()\fR sends a message digest control operation to the context \fBctx\fR. The message digest is specified by its name \fBmd\fR. .PP All the remaining \*(L"functions\*(R" are implemented as macros. .PP The \fBEVP_PKEY_CTX_set_signature_md()\fR macro sets the message digest type used in a signature. It can be used in the \s-1RSA, DSA\s0 and \s-1ECDSA\s0 algorithms. .PP The \fBEVP_PKEY_CTX_get_signature_md()\fR macro gets the message digest type used in a signature. It can be used in the \s-1RSA, DSA\s0 and \s-1ECDSA\s0 algorithms. .PP Key generation typically involves setting up parameters to be used and generating the private and public key data. Some algorithm implementations allow private key data to be set explicitly using the \fBEVP_PKEY_CTX_set_mac_key()\fR macro. In this case key generation is simply the process of setting up the parameters for the key and then setting the raw key data to the value explicitly provided by that macro. Normally applications would call \&\fBEVP_PKEY_new_raw_private_key\fR\|(3) or similar functions instead of this macro. .PP The \fBEVP_PKEY_CTX_set_mac_key()\fR macro can be used with any of the algorithms supported by the \fBEVP_PKEY_new_raw_private_key\fR\|(3) function. .SS "\s-1RSA\s0 parameters" .IX Subsection "RSA parameters" The \fBEVP_PKEY_CTX_set_rsa_padding()\fR macro sets the \s-1RSA\s0 padding mode for \fBctx\fR. The \fBpad\fR parameter can take the value \fB\s-1RSA_PKCS1_PADDING\s0\fR for PKCS#1 padding, \fB\s-1RSA_SSLV23_PADDING\s0\fR for SSLv23 padding, \fB\s-1RSA_NO_PADDING\s0\fR for no padding, \fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR for \s-1OAEP\s0 padding (encrypt and decrypt only), \fB\s-1RSA_X931_PADDING\s0\fR for X9.31 padding (signature operations only) and \fB\s-1RSA_PKCS1_PSS_PADDING\s0\fR (sign and verify only). .PP Two \s-1RSA\s0 padding modes behave differently if \fBEVP_PKEY_CTX_set_signature_md()\fR is used. If this macro is called for PKCS#1 padding the plaintext buffer is an actual digest value and is encapsulated in a DigestInfo structure according to PKCS#1 when signing and this structure is expected (and stripped off) when verifying. If this control is not used with \s-1RSA\s0 and PKCS#1 padding then the supplied data is used directly and not encapsulated. In the case of X9.31 padding for \s-1RSA\s0 the algorithm identifier byte is added or checked and removed if this control is called. If it is not called then the first byte of the plaintext buffer is expected to be the algorithm identifier byte. .PP The \fBEVP_PKEY_CTX_get_rsa_padding()\fR macro gets the \s-1RSA\s0 padding mode for \fBctx\fR. .PP The \fBEVP_PKEY_CTX_set_rsa_pss_saltlen()\fR macro sets the \s-1RSA PSS\s0 salt length to \&\fBlen\fR. As its name implies it is only supported for \s-1PSS\s0 padding. Three special values are supported: \fB\s-1RSA_PSS_SALTLEN_DIGEST\s0\fR sets the salt length to the digest length, \fB\s-1RSA_PSS_SALTLEN_MAX\s0\fR sets the salt length to the maximum permissible value. When verifying \fB\s-1RSA_PSS_SALTLEN_AUTO\s0\fR causes the salt length to be automatically determined based on the \fB\s-1PSS\s0\fR block structure. If this macro is not called maximum salt length is used when signing and auto detection when verifying is used by default. .PP The \fBEVP_PKEY_CTX_get_rsa_pss_saltlen()\fR macro gets the \s-1RSA PSS\s0 salt length for \fBctx\fR. The padding mode must have been set to \fB\s-1RSA_PKCS1_PSS_PADDING\s0\fR. .PP The \fBEVP_PKEY_CTX_set_rsa_keygen_bits()\fR macro sets the \s-1RSA\s0 key length for \&\s-1RSA\s0 key generation to \fBbits\fR. If not specified 1024 bits is used. .PP The \fBEVP_PKEY_CTX_set_rsa_keygen_pubexp()\fR macro sets the public exponent value for \s-1RSA\s0 key generation to \fBpubexp\fR. Currently it should be an odd integer. The \&\fBpubexp\fR pointer is used internally by this function so it should not be modified or freed after the call. If not specified 65537 is used. .PP The \fBEVP_PKEY_CTX_set_rsa_keygen_primes()\fR macro sets the number of primes for \&\s-1RSA\s0 key generation to \fBprimes\fR. If not specified 2 is used. .PP The \fBEVP_PKEY_CTX_set_rsa_mgf1_md()\fR macro sets the \s-1MGF1\s0 digest for \s-1RSA\s0 padding schemes to \fBmd\fR. If not explicitly set the signing digest is used. The padding mode must have been set to \fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR or \fB\s-1RSA_PKCS1_PSS_PADDING\s0\fR. .PP The \fBEVP_PKEY_CTX_get_rsa_mgf1_md()\fR macro gets the \s-1MGF1\s0 digest for \fBctx\fR. If not explicitly set the signing digest is used. The padding mode must have been set to \fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR or \fB\s-1RSA_PKCS1_PSS_PADDING\s0\fR. .PP The \fBEVP_PKEY_CTX_set_rsa_oaep_md()\fR macro sets the message digest type used in \s-1RSA OAEP\s0 to \fBmd\fR. The padding mode must have been set to \&\fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR. .PP The \fBEVP_PKEY_CTX_get_rsa_oaep_md()\fR macro gets the message digest type used in \s-1RSA OAEP\s0 to \fBmd\fR. The padding mode must have been set to \&\fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR. .PP The \fBEVP_PKEY_CTX_set0_rsa_oaep_label()\fR macro sets the \s-1RSA OAEP\s0 label to \&\fBlabel\fR and its length to \fBlen\fR. If \fBlabel\fR is \s-1NULL\s0 or \fBlen\fR is 0, the label is cleared. The library takes ownership of the label so the caller should not free the original memory pointed to by \fBlabel\fR. The padding mode must have been set to \fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR. .PP The \fBEVP_PKEY_CTX_get0_rsa_oaep_label()\fR macro gets the \s-1RSA OAEP\s0 label to \&\fBlabel\fR. The return value is the label length. The padding mode must have been set to \fB\s-1RSA_PKCS1_OAEP_PADDING\s0\fR. The resulting pointer is owned by the library and should not be freed by the caller. .SS "\s-1DSA\s0 parameters" .IX Subsection "DSA parameters" The \fBEVP_PKEY_CTX_set_dsa_paramgen_bits()\fR macro sets the number of bits used for \s-1DSA\s0 parameter generation to \fBbits\fR. If not specified 1024 is used. .SS "\s-1DH\s0 parameters" .IX Subsection "DH parameters" The \fBEVP_PKEY_CTX_set_dh_paramgen_prime_len()\fR macro sets the length of the \s-1DH\s0 prime parameter \fBp\fR for \s-1DH\s0 parameter generation. If this macro is not called then 1024 is used. Only accepts lengths greater than or equal to 256. .PP The \fBEVP_PKEY_CTX_set_dh_paramgen_subprime_len()\fR macro sets the length of the \s-1DH\s0 optional subprime parameter \fBq\fR for \s-1DH\s0 parameter generation. The default is 256 if the prime is at least 2048 bits long or 160 otherwise. The \s-1DH\s0 paramgen type must have been set to x9.42. .PP The \fBEVP_PKEY_CTX_set_dh_paramgen_generator()\fR macro sets \s-1DH\s0 generator to \fBgen\fR for \s-1DH\s0 parameter generation. If not specified 2 is used. .PP The \fBEVP_PKEY_CTX_set_dh_paramgen_type()\fR macro sets the key type for \s-1DH\s0 parameter generation. Use 0 for PKCS#3 \s-1DH\s0 and 1 for X9.42 \s-1DH.\s0 The default is 0. .PP The \fBEVP_PKEY_CTX_set_dh_pad()\fR macro sets the \s-1DH\s0 padding mode. If \fBpad\fR is 1 the shared secret is padded with zeroes up to the size of the \s-1DH\s0 prime \fBp\fR. If \fBpad\fR is zero (the default) then no padding is performed. .PP \&\fBEVP_PKEY_CTX_set_dh_nid()\fR sets the \s-1DH\s0 parameters to values corresponding to \&\fBnid\fR as defined in \s-1RFC7919.\s0 The \fBnid\fR parameter must be \fBNID_ffdhe2048\fR, \&\fBNID_ffdhe3072\fR, \fBNID_ffdhe4096\fR, \fBNID_ffdhe6144\fR, \fBNID_ffdhe8192\fR or \fBNID_undef\fR to clear the stored value. This macro can be called during parameter or key generation. The nid parameter and the rfc5114 parameter are mutually exclusive. .PP The \fBEVP_PKEY_CTX_set_dh_rfc5114()\fR and \fBEVP_PKEY_CTX_set_dhx_rfc5114()\fR macros are synonymous. They set the \s-1DH\s0 parameters to the values defined in \s-1RFC5114.\s0 The \&\fBrfc5114\fR parameter must be 1, 2 or 3 corresponding to \s-1RFC5114\s0 sections 2.1, 2.2 and 2.3. or 0 to clear the stored value. This macro can be called during parameter generation. The \fBctx\fR must have a key type of \&\fB\s-1EVP_PKEY_DHX\s0\fR. The rfc5114 parameter and the nid parameter are mutually exclusive. .SS "\s-1DH\s0 key derivation function parameters" .IX Subsection "DH key derivation function parameters" Note that all of the following functions require that the \fBctx\fR parameter has a private key type of \fB\s-1EVP_PKEY_DHX\s0\fR. When using key derivation, the output of \&\fBEVP_PKEY_derive()\fR is the output of the \s-1KDF\s0 instead of the \s-1DH\s0 shared secret. The \s-1KDF\s0 output is typically used as a Key Encryption Key (\s-1KEK\s0) that in turn encrypts a Content Encryption Key (\s-1CEK\s0). .PP The \fBEVP_PKEY_CTX_set_dh_kdf_type()\fR macro sets the key derivation function type to \fBkdf\fR for \s-1DH\s0 key derivation. Possible values are \fB\s-1EVP_PKEY_DH_KDF_NONE\s0\fR and \fB\s-1EVP_PKEY_DH_KDF_X9_42\s0\fR which uses the key derivation specified in \s-1RFC2631\s0 (based on the keying algorithm described in X9.42). When using key derivation, the \fBkdf_oid\fR, \fBkdf_md\fR and \fBkdf_outlen\fR parameters must also be specified. .PP The \fBEVP_PKEY_CTX_get_dh_kdf_type()\fR macro gets the key derivation function type for \fBctx\fR used for \s-1DH\s0 key derivation. Possible values are \fB\s-1EVP_PKEY_DH_KDF_NONE\s0\fR and \fB\s-1EVP_PKEY_DH_KDF_X9_42\s0\fR. .PP The \fBEVP_PKEY_CTX_set0_dh_kdf_oid()\fR macro sets the key derivation function object identifier to \fBoid\fR for \s-1DH\s0 key derivation. This \s-1OID\s0 should identify the algorithm to be used with the Content Encryption Key. The library takes ownership of the object identifier so the caller should not free the original memory pointed to by \fBoid\fR. .PP The \fBEVP_PKEY_CTX_get0_dh_kdf_oid()\fR macro gets the key derivation function oid for \fBctx\fR used for \s-1DH\s0 key derivation. The resulting pointer is owned by the library and should not be freed by the caller. .PP The \fBEVP_PKEY_CTX_set_dh_kdf_md()\fR macro sets the key derivation function message digest to \fBmd\fR for \s-1DH\s0 key derivation. Note that \s-1RFC2631\s0 specifies that this digest should be \s-1SHA1\s0 but OpenSSL tolerates other digests. .PP The \fBEVP_PKEY_CTX_get_dh_kdf_md()\fR macro gets the key derivation function message digest for \fBctx\fR used for \s-1DH\s0 key derivation. .PP The \fBEVP_PKEY_CTX_set_dh_kdf_outlen()\fR macro sets the key derivation function output length to \fBlen\fR for \s-1DH\s0 key derivation. .PP The \fBEVP_PKEY_CTX_get_dh_kdf_outlen()\fR macro gets the key derivation function output length for \fBctx\fR used for \s-1DH\s0 key derivation. .PP The \fBEVP_PKEY_CTX_set0_dh_kdf_ukm()\fR macro sets the user key material to \&\fBukm\fR and its length to \fBlen\fR for \s-1DH\s0 key derivation. This parameter is optional and corresponds to the partyAInfo field in \s-1RFC2631\s0 terms. The specification requires that it is 512 bits long but this is not enforced by OpenSSL. The library takes ownership of the user key material so the caller should not free the original memory pointed to by \fBukm\fR. .PP The \fBEVP_PKEY_CTX_get0_dh_kdf_ukm()\fR macro gets the user key material for \fBctx\fR. The return value is the user key material length. The resulting pointer is owned by the library and should not be freed by the caller. .SS "\s-1EC\s0 parameters" .IX Subsection "EC parameters" The \fBEVP_PKEY_CTX_set_ec_paramgen_curve_nid()\fR sets the \s-1EC\s0 curve for \s-1EC\s0 parameter generation to \fBnid\fR. For \s-1EC\s0 parameter generation this macro must be called or an error occurs because there is no default curve. This function can also be called to set the curve explicitly when generating an \s-1EC\s0 key. .PP The \fBEVP_PKEY_CTX_set_ec_param_enc()\fR macro sets the \s-1EC\s0 parameter encoding to \&\fBparam_enc\fR when generating \s-1EC\s0 parameters or an \s-1EC\s0 key. The encoding can be \&\fB\s-1OPENSSL_EC_EXPLICIT_CURVE\s0\fR for explicit parameters (the default in versions of OpenSSL before 1.1.0) or \fB\s-1OPENSSL_EC_NAMED_CURVE\s0\fR to use named curve form. For maximum compatibility the named curve form should be used. Note: the \&\fB\s-1OPENSSL_EC_NAMED_CURVE\s0\fR value was added in OpenSSL 1.1.0; previous versions should use 0 instead. .SS "\s-1ECDH\s0 parameters" .IX Subsection "ECDH parameters" The \fBEVP_PKEY_CTX_set_ecdh_cofactor_mode()\fR macro sets the cofactor mode to \&\fBcofactor_mode\fR for \s-1ECDH\s0 key derivation. Possible values are 1 to enable cofactor key derivation, 0 to disable it and \-1 to clear the stored cofactor mode and fallback to the private key cofactor mode. .PP The \fBEVP_PKEY_CTX_get_ecdh_cofactor_mode()\fR macro returns the cofactor mode for \&\fBctx\fR used for \s-1ECDH\s0 key derivation. Possible values are 1 when cofactor key derivation is enabled and 0 otherwise. .SS "\s-1ECDH\s0 key derivation function parameters" .IX Subsection "ECDH key derivation function parameters" The \fBEVP_PKEY_CTX_set_ecdh_kdf_type()\fR macro sets the key derivation function type to \fBkdf\fR for \s-1ECDH\s0 key derivation. Possible values are \fB\s-1EVP_PKEY_ECDH_KDF_NONE\s0\fR and \fB\s-1EVP_PKEY_ECDH_KDF_X9_63\s0\fR which uses the key derivation specified in X9.63. When using key derivation, the \fBkdf_md\fR and \fBkdf_outlen\fR parameters must also be specified. .PP The \fBEVP_PKEY_CTX_get_ecdh_kdf_type()\fR macro returns the key derivation function type for \fBctx\fR used for \s-1ECDH\s0 key derivation. Possible values are \&\fB\s-1EVP_PKEY_ECDH_KDF_NONE\s0\fR and \fB\s-1EVP_PKEY_ECDH_KDF_X9_63\s0\fR. .PP The \fBEVP_PKEY_CTX_set_ecdh_kdf_md()\fR macro sets the key derivation function message digest to \fBmd\fR for \s-1ECDH\s0 key derivation. Note that X9.63 specifies that this digest should be \s-1SHA1\s0 but OpenSSL tolerates other digests. .PP The \fBEVP_PKEY_CTX_get_ecdh_kdf_md()\fR macro gets the key derivation function message digest for \fBctx\fR used for \s-1ECDH\s0 key derivation. .PP The \fBEVP_PKEY_CTX_set_ecdh_kdf_outlen()\fR macro sets the key derivation function output length to \fBlen\fR for \s-1ECDH\s0 key derivation. .PP The \fBEVP_PKEY_CTX_get_ecdh_kdf_outlen()\fR macro gets the key derivation function output length for \fBctx\fR used for \s-1ECDH\s0 key derivation. .PP The \fBEVP_PKEY_CTX_set0_ecdh_kdf_ukm()\fR macro sets the user key material to \fBukm\fR for \s-1ECDH\s0 key derivation. This parameter is optional and corresponds to the shared info in X9.63 terms. The library takes ownership of the user key material so the caller should not free the original memory pointed to by \fBukm\fR. .PP The \fBEVP_PKEY_CTX_get0_ecdh_kdf_ukm()\fR macro gets the user key material for \fBctx\fR. The return value is the user key material length. The resulting pointer is owned by the library and should not be freed by the caller. .SS "Other parameters" .IX Subsection "Other parameters" The \fBEVP_PKEY_CTX_set1_id()\fR, \fBEVP_PKEY_CTX_get1_id()\fR and \fBEVP_PKEY_CTX_get1_id_len()\fR macros are used to manipulate the special identifier field for specific signature algorithms such as \s-1SM2.\s0 The \fBEVP_PKEY_CTX_set1_id()\fR sets an \s-1ID\s0 pointed by \fBid\fR with the length \fBid_len\fR to the library. The library takes a copy of the id so that the caller can safely free the original memory pointed to by \fBid\fR. The \&\fBEVP_PKEY_CTX_get1_id_len()\fR macro returns the length of the \s-1ID\s0 set via a previous call to \fBEVP_PKEY_CTX_set1_id()\fR. The length is usually used to allocate adequate memory for further calls to \fBEVP_PKEY_CTX_get1_id()\fR. The \fBEVP_PKEY_CTX_get1_id()\fR macro returns the previously set \s-1ID\s0 value to caller in \fBid\fR. The caller should allocate adequate memory space for the \fBid\fR before calling \fBEVP_PKEY_CTX_get1_id()\fR. .SH "RETURN VALUES" .IX Header "RETURN VALUES" \&\fBEVP_PKEY_CTX_ctrl()\fR and its macros return a positive value for success and 0 or a negative value for failure. In particular a return value of \-2 indicates the operation is not supported by the public key algorithm. .SH "SEE ALSO" .IX Header "SEE ALSO" \&\fBEVP_PKEY_CTX_new\fR\|(3), \&\fBEVP_PKEY_encrypt\fR\|(3), \&\fBEVP_PKEY_decrypt\fR\|(3), \&\fBEVP_PKEY_sign\fR\|(3), \&\fBEVP_PKEY_verify\fR\|(3), \&\fBEVP_PKEY_verify_recover\fR\|(3), \&\fBEVP_PKEY_derive\fR\|(3), \&\fBEVP_PKEY_keygen\fR\|(3) .SH "HISTORY" .IX Header "HISTORY" The \&\fBEVP_PKEY_CTX_set1_id()\fR, \fBEVP_PKEY_CTX_get1_id()\fR and \fBEVP_PKEY_CTX_get1_id_len()\fR macros were added in 1.1.1, other functions were added in OpenSSL 1.0.0. .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright 2006\-2018 The OpenSSL Project Authors. All Rights Reserved. .PP Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at .