.\" Automatically generated by Pod::Man 4.10 (Pod::Simple 3.35) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Math::GSL::CDF 3pm" .TH Math::GSL::CDF 3pm "2019-02-23" "perl v5.28.1" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" Math::GSL::CDF \- Cumulative Distribution Functions .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 2 \& use Math::GSL::CDF qw/:all/; \& my $x = gsl_cdf_gaussian_Pinv($P, $sigma); \& \& use Math::GSL::CDF qw/:beta/; \& print gsl_cdf_beta_P(1,2,3) . "\en"; .Ve .PP These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the named distributions. .SH "DESCRIPTION" .IX Header "DESCRIPTION" Here is a list of all the functions included in this module : .IP "gsl_cdf_ugaussian_P($x)" 4 .IX Item "gsl_cdf_ugaussian_P($x)" .PD 0 .IP "gsl_cdf_ugaussian_Q($x)" 4 .IX Item "gsl_cdf_ugaussian_Q($x)" .IP "gsl_cdf_ugaussian_Pinv($P)" 4 .IX Item "gsl_cdf_ugaussian_Pinv($P)" .IP "gsl_cdf_ugaussian_Qinv($Q)" 4 .IX Item "gsl_cdf_ugaussian_Qinv($Q)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the unit Gaussian distribution. .ie n .IP "gsl_cdf_gaussian_P($x, $sigma)" 4 .el .IP "gsl_cdf_gaussian_P($x, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_gaussian_P($x, $sigma)" .PD 0 .ie n .IP "gsl_cdf_gaussian_Q($x, $sigma)" 4 .el .IP "gsl_cdf_gaussian_Q($x, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_gaussian_Q($x, $sigma)" .ie n .IP "gsl_cdf_gaussian_Pinv($P, $sigma)" 4 .el .IP "gsl_cdf_gaussian_Pinv($P, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_gaussian_Pinv($P, $sigma)" .ie n .IP "gsl_cdf_gaussian_Qinv($Q, $sigma)" 4 .el .IP "gsl_cdf_gaussian_Qinv($Q, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_gaussian_Qinv($Q, $sigma)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Gaussian distribution with standard deviation \f(CW$sigma\fR. .ie n .IP "gsl_cdf_gamma_P($x, $a, $b)" 4 .el .IP "gsl_cdf_gamma_P($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gamma_P($x, $a, $b)" .PD 0 .ie n .IP "gsl_cdf_gamma_Q($x, $a, $b)" 4 .el .IP "gsl_cdf_gamma_Q($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gamma_Q($x, $a, $b)" .ie n .IP "gsl_cdf_gamma_Pinv($P, $a, $b)" 4 .el .IP "gsl_cdf_gamma_Pinv($P, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gamma_Pinv($P, $a, $b)" .ie n .IP "gsl_cdf_gamma_Qinv($Q, $a, $b)" 4 .el .IP "gsl_cdf_gamma_Qinv($Q, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gamma_Qinv($Q, $a, $b)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the gamma distribution with parameters \f(CW$a\fR and \f(CW$b\fR. .ie n .IP "gsl_cdf_cauchy_P($x, $a)" 4 .el .IP "gsl_cdf_cauchy_P($x, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_cauchy_P($x, $a)" .PD 0 .ie n .IP "gsl_cdf_cauchy_Q($x, $a)" 4 .el .IP "gsl_cdf_cauchy_Q($x, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_cauchy_Q($x, $a)" .ie n .IP "gsl_cdf_cauchy_Pinv($P, $a)" 4 .el .IP "gsl_cdf_cauchy_Pinv($P, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_cauchy_Pinv($P, $a)" .ie n .IP "gsl_cdf_cauchy_Qinv($Q, $a)" 4 .el .IP "gsl_cdf_cauchy_Qinv($Q, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_cauchy_Qinv($Q, $a)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Cauchy distribution with scale parameter \f(CW$a\fR. .ie n .IP "gsl_cdf_laplace_P($x, $a)" 4 .el .IP "gsl_cdf_laplace_P($x, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_laplace_P($x, $a)" .PD 0 .ie n .IP "gsl_cdf_laplace_Q($x, $a)" 4 .el .IP "gsl_cdf_laplace_Q($x, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_laplace_Q($x, $a)" .ie n .IP "gsl_cdf_laplace_Pinv($P, $a)" 4 .el .IP "gsl_cdf_laplace_Pinv($P, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_laplace_Pinv($P, $a)" .ie n .IP "gsl_cdf_laplace_Qinv($Q, $a)" 4 .el .IP "gsl_cdf_laplace_Qinv($Q, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_laplace_Qinv($Q, $a)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Laplace distribution with width \f(CW$a\fR. .ie n .IP "gsl_cdf_rayleigh_P($x, $sigma)" 4 .el .IP "gsl_cdf_rayleigh_P($x, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_rayleigh_P($x, $sigma)" .PD 0 .ie n .IP "gsl_cdf_rayleigh_Q($x, $sigma)" 4 .el .IP "gsl_cdf_rayleigh_Q($x, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_rayleigh_Q($x, $sigma)" .ie n .IP "gsl_cdf_rayleigh_Pinv($P, $sigma)" 4 .el .IP "gsl_cdf_rayleigh_Pinv($P, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_rayleigh_Pinv($P, $sigma)" .ie n .IP "gsl_cdf_rayleigh_Qinv($Q, $sigma)" 4 .el .IP "gsl_cdf_rayleigh_Qinv($Q, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_rayleigh_Qinv($Q, $sigma)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Rayleigh distribution with scale parameter \f(CW$sigma\fR. .ie n .IP "gsl_cdf_chisq_P($x, $nu)" 4 .el .IP "gsl_cdf_chisq_P($x, \f(CW$nu\fR)" 4 .IX Item "gsl_cdf_chisq_P($x, $nu)" .PD 0 .ie n .IP "gsl_cdf_chisq_Q($x, $nu)" 4 .el .IP "gsl_cdf_chisq_Q($x, \f(CW$nu\fR)" 4 .IX Item "gsl_cdf_chisq_Q($x, $nu)" .ie n .IP "gsl_cdf_chisq_Pinv($P, $nu)" 4 .el .IP "gsl_cdf_chisq_Pinv($P, \f(CW$nu\fR)" 4 .IX Item "gsl_cdf_chisq_Pinv($P, $nu)" .ie n .IP "gsl_cdf_chisq_Qinv($Q, $nu)" 4 .el .IP "gsl_cdf_chisq_Qinv($Q, \f(CW$nu\fR)" 4 .IX Item "gsl_cdf_chisq_Qinv($Q, $nu)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the chi-squared distribution with \f(CW$nu\fR degrees of freedom. .ie n .IP "gsl_cdf_exponential_P($x, $mu)" 4 .el .IP "gsl_cdf_exponential_P($x, \f(CW$mu\fR)" 4 .IX Item "gsl_cdf_exponential_P($x, $mu)" .PD 0 .ie n .IP "gsl_cdf_exponential_Q($x, $mu)" 4 .el .IP "gsl_cdf_exponential_Q($x, \f(CW$mu\fR)" 4 .IX Item "gsl_cdf_exponential_Q($x, $mu)" .ie n .IP "gsl_cdf_exponential_Pinv($P, $mu)" 4 .el .IP "gsl_cdf_exponential_Pinv($P, \f(CW$mu\fR)" 4 .IX Item "gsl_cdf_exponential_Pinv($P, $mu)" .ie n .IP "gsl_cdf_exponential_Qinv($Q, $mu)" 4 .el .IP "gsl_cdf_exponential_Qinv($Q, \f(CW$mu\fR)" 4 .IX Item "gsl_cdf_exponential_Qinv($Q, $mu)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Laplace distribution with width \f(CW$a\fR. .ie n .IP "gsl_cdf_exppow_P($x, $a, $b)" 4 .el .IP "gsl_cdf_exppow_P($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_exppow_P($x, $a, $b)" .PD 0 .ie n .IP "gsl_cdf_exppow_Q($x, $a, $b)" 4 .el .IP "gsl_cdf_exppow_Q($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_exppow_Q($x, $a, $b)" .PD These functions compute the cumulative distribution functions P(x), Q(x) for the exponential power distribution with parameters \f(CW$a\fR and \f(CW$b\fR. .ie n .IP "gsl_cdf_tdist_P($x, $nu)" 4 .el .IP "gsl_cdf_tdist_P($x, \f(CW$nu\fR)" 4 .IX Item "gsl_cdf_tdist_P($x, $nu)" .PD 0 .ie n .IP "gsl_cdf_tdist_Q($x, $nu)" 4 .el .IP "gsl_cdf_tdist_Q($x, \f(CW$nu\fR)" 4 .IX Item "gsl_cdf_tdist_Q($x, $nu)" .ie n .IP "gsl_cdf_tdist_Pinv($P, $nu)" 4 .el .IP "gsl_cdf_tdist_Pinv($P, \f(CW$nu\fR)" 4 .IX Item "gsl_cdf_tdist_Pinv($P, $nu)" .ie n .IP "gsl_cdf_tdist_Qinv($Q, $nu)" 4 .el .IP "gsl_cdf_tdist_Qinv($Q, \f(CW$nu\fR)" 4 .IX Item "gsl_cdf_tdist_Qinv($Q, $nu)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the t\-distribution with \f(CW$nu\fR degrees of freedom. .ie n .IP "gsl_cdf_fdist_P($x, $nu1, $nu2)" 4 .el .IP "gsl_cdf_fdist_P($x, \f(CW$nu1\fR, \f(CW$nu2\fR)" 4 .IX Item "gsl_cdf_fdist_P($x, $nu1, $nu2)" .PD 0 .ie n .IP "gsl_cdf_fdist_Q($x, $nu1, $nu2)" 4 .el .IP "gsl_cdf_fdist_Q($x, \f(CW$nu1\fR, \f(CW$nu2\fR)" 4 .IX Item "gsl_cdf_fdist_Q($x, $nu1, $nu2)" .ie n .IP "gsl_cdf_fdist_Pinv($P, $nu1, $nu2)" 4 .el .IP "gsl_cdf_fdist_Pinv($P, \f(CW$nu1\fR, \f(CW$nu2\fR)" 4 .IX Item "gsl_cdf_fdist_Pinv($P, $nu1, $nu2)" .ie n .IP "gsl_cdf_fdist_Qinv($Q, $nu1, $nu2)" 4 .el .IP "gsl_cdf_fdist_Qinv($Q, \f(CW$nu1\fR, \f(CW$nu2\fR)" 4 .IX Item "gsl_cdf_fdist_Qinv($Q, $nu1, $nu2)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the F\-distribution with \f(CW$nu1\fR and \f(CW$nu2\fR degrees of freedom. .ie n .IP "gsl_cdf_beta_P($x, $a, $b)" 4 .el .IP "gsl_cdf_beta_P($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_beta_P($x, $a, $b)" .PD 0 .ie n .IP "gsl_cdf_beta_Q($x, $a, $b)" 4 .el .IP "gsl_cdf_beta_Q($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_beta_Q($x, $a, $b)" .ie n .IP "gsl_cdf_beta_Pinv($P, $a, $b)" 4 .el .IP "gsl_cdf_beta_Pinv($P, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_beta_Pinv($P, $a, $b)" .ie n .IP "gsl_cdf_beta_Qinv($Q, $a, $b)" 4 .el .IP "gsl_cdf_beta_Qinv($Q, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_beta_Qinv($Q, $a, $b)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the beta distribution with parameters \f(CW$a\fR and \f(CW$b\fR. .ie n .IP "gsl_cdf_flat_P($x, $a, $b)" 4 .el .IP "gsl_cdf_flat_P($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_flat_P($x, $a, $b)" .PD 0 .ie n .IP "gsl_cdf_flat_Q($x, $a, $b)" 4 .el .IP "gsl_cdf_flat_Q($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_flat_Q($x, $a, $b)" .ie n .IP "gsl_cdf_flat_Pinv($P, $a, $b)" 4 .el .IP "gsl_cdf_flat_Pinv($P, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_flat_Pinv($P, $a, $b)" .ie n .IP "gsl_cdf_flat_Qinv($Q, $a, $b)" 4 .el .IP "gsl_cdf_flat_Qinv($Q, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_flat_Qinv($Q, $a, $b)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for a uniform distribution from \f(CW$a\fR to \f(CW$b\fR. .ie n .IP "gsl_cdf_lognormal_P($x, $zeta, $sigma)" 4 .el .IP "gsl_cdf_lognormal_P($x, \f(CW$zeta\fR, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_lognormal_P($x, $zeta, $sigma)" .PD 0 .ie n .IP "gsl_cdf_lognormal_Q($x, $zeta, $sigma)" 4 .el .IP "gsl_cdf_lognormal_Q($x, \f(CW$zeta\fR, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_lognormal_Q($x, $zeta, $sigma)" .ie n .IP "gsl_cdf_lognormal_Pinv($P, $zeta, $sigma)" 4 .el .IP "gsl_cdf_lognormal_Pinv($P, \f(CW$zeta\fR, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_lognormal_Pinv($P, $zeta, $sigma)" .ie n .IP "gsl_cdf_lognormal_Qinv($Q, $zeta, $sigma)" 4 .el .IP "gsl_cdf_lognormal_Qinv($Q, \f(CW$zeta\fR, \f(CW$sigma\fR)" 4 .IX Item "gsl_cdf_lognormal_Qinv($Q, $zeta, $sigma)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the lognormal distribution with parameters \f(CW$zeta\fR and \f(CW$sigma\fR. .ie n .IP "gsl_cdf_gumbel1_P($x, $a, $b)" 4 .el .IP "gsl_cdf_gumbel1_P($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gumbel1_P($x, $a, $b)" .PD 0 .ie n .IP "gsl_cdf_gumbel1_Q($x, $a, $b)" 4 .el .IP "gsl_cdf_gumbel1_Q($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gumbel1_Q($x, $a, $b)" .ie n .IP "gsl_cdf_gumbel1_Pinv($P, $a, $b)" 4 .el .IP "gsl_cdf_gumbel1_Pinv($P, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gumbel1_Pinv($P, $a, $b)" .ie n .IP "gsl_cdf_gumbel1_Qinv($Q, $a, $b)" 4 .el .IP "gsl_cdf_gumbel1_Qinv($Q, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gumbel1_Qinv($Q, $a, $b)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type\-1 Gumbel distribution with parameters \f(CW$a\fR and \f(CW$b\fR. .ie n .IP "gsl_cdf_gumbel2_P($x, $a, $b)" 4 .el .IP "gsl_cdf_gumbel2_P($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gumbel2_P($x, $a, $b)" .PD 0 .ie n .IP "gsl_cdf_gumbel2_Q($x, $a, $b)" 4 .el .IP "gsl_cdf_gumbel2_Q($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gumbel2_Q($x, $a, $b)" .ie n .IP "gsl_cdf_gumbel2_Pinv($P, $a, $b)" 4 .el .IP "gsl_cdf_gumbel2_Pinv($P, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gumbel2_Pinv($P, $a, $b)" .ie n .IP "gsl_cdf_gumbel2_Qinv($Q, $a, $b)" 4 .el .IP "gsl_cdf_gumbel2_Qinv($Q, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_gumbel2_Qinv($Q, $a, $b)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type\-2 Gumbel distribution with parameters \f(CW$a\fR and \f(CW$b\fR. .ie n .IP "gsl_cdf_weibull_P($x, $a, $b)" 4 .el .IP "gsl_cdf_weibull_P($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_weibull_P($x, $a, $b)" .PD 0 .ie n .IP "gsl_cdf_weibull_Q($x, $a, $b)" 4 .el .IP "gsl_cdf_weibull_Q($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_weibull_Q($x, $a, $b)" .ie n .IP "gsl_cdf_weibull_Pinv($P, $a, $b)" 4 .el .IP "gsl_cdf_weibull_Pinv($P, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_weibull_Pinv($P, $a, $b)" .ie n .IP "gsl_cdf_weibull_Qinv($Q, $a, $b)" 4 .el .IP "gsl_cdf_weibull_Qinv($Q, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_weibull_Qinv($Q, $a, $b)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type\-1 Gumbel distribution with parameters \f(CW$a\fR and \f(CW$b\fR. .ie n .IP "gsl_cdf_pareto_P($x, $a, $b)" 4 .el .IP "gsl_cdf_pareto_P($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_pareto_P($x, $a, $b)" .PD 0 .ie n .IP "gsl_cdf_pareto_Q($x, $a, $b)" 4 .el .IP "gsl_cdf_pareto_Q($x, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_pareto_Q($x, $a, $b)" .ie n .IP "gsl_cdf_pareto_Pinv($P, $a, $b)" 4 .el .IP "gsl_cdf_pareto_Pinv($P, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_pareto_Pinv($P, $a, $b)" .ie n .IP "gsl_cdf_pareto_Qinv($Q, $a, $b)" 4 .el .IP "gsl_cdf_pareto_Qinv($Q, \f(CW$a\fR, \f(CW$b\fR)" 4 .IX Item "gsl_cdf_pareto_Qinv($Q, $a, $b)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Pareto distribution with exponent \f(CW$a\fR and scale \f(CW$b\fR. .ie n .IP "gsl_cdf_logistic_P($x, $a)" 4 .el .IP "gsl_cdf_logistic_P($x, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_logistic_P($x, $a)" .PD 0 .ie n .IP "gsl_cdf_logistic_Q($x, $a)" 4 .el .IP "gsl_cdf_logistic_Q($x, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_logistic_Q($x, $a)" .ie n .IP "gsl_cdf_logistic_Pinv($P, $a)" 4 .el .IP "gsl_cdf_logistic_Pinv($P, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_logistic_Pinv($P, $a)" .ie n .IP "gsl_cdf_logistic_Qinv($Q, $a)" 4 .el .IP "gsl_cdf_logistic_Qinv($Q, \f(CW$a\fR)" 4 .IX Item "gsl_cdf_logistic_Qinv($Q, $a)" .PD These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the logistic distribution with scale parameter a. .ie n .IP "gsl_cdf_binomial_P($k, $p, $n)" 4 .el .IP "gsl_cdf_binomial_P($k, \f(CW$p\fR, \f(CW$n\fR)" 4 .IX Item "gsl_cdf_binomial_P($k, $p, $n)" .PD 0 .ie n .IP "gsl_cdf_binomial_Q($k, $p, $n)" 4 .el .IP "gsl_cdf_binomial_Q($k, \f(CW$p\fR, \f(CW$n\fR)" 4 .IX Item "gsl_cdf_binomial_Q($k, $p, $n)" .PD These functions compute the cumulative distribution functions P(k), Q(k) for the binomial distribution with parameters \f(CW$p\fR and \f(CW$n\fR. .ie n .IP "gsl_cdf_poisson_P($k, $mu)" 4 .el .IP "gsl_cdf_poisson_P($k, \f(CW$mu\fR)" 4 .IX Item "gsl_cdf_poisson_P($k, $mu)" .PD 0 .ie n .IP "gsl_cdf_poisson_Q($k, $mu)" 4 .el .IP "gsl_cdf_poisson_Q($k, \f(CW$mu\fR)" 4 .IX Item "gsl_cdf_poisson_Q($k, $mu)" .PD These functions compute the cumulative distribution functions P(k), Q(k) for the Poisson distribution with parameter \f(CW$mu\fR. .ie n .IP "gsl_cdf_geometric_P($k, $p)" 4 .el .IP "gsl_cdf_geometric_P($k, \f(CW$p\fR)" 4 .IX Item "gsl_cdf_geometric_P($k, $p)" .PD 0 .ie n .IP "gsl_cdf_geometric_Q($k, $p)" 4 .el .IP "gsl_cdf_geometric_Q($k, \f(CW$p\fR)" 4 .IX Item "gsl_cdf_geometric_Q($k, $p)" .PD These functions compute the cumulative distribution functions P(k), Q(k) for the geometric distribution with parameter \f(CW$p\fR. .ie n .IP "gsl_cdf_negative_binomial_P($k, $p, $n)" 4 .el .IP "gsl_cdf_negative_binomial_P($k, \f(CW$p\fR, \f(CW$n\fR)" 4 .IX Item "gsl_cdf_negative_binomial_P($k, $p, $n)" .PD 0 .ie n .IP "gsl_cdf_negative_binomial_Q($k, $p, $n)" 4 .el .IP "gsl_cdf_negative_binomial_Q($k, \f(CW$p\fR, \f(CW$n\fR)" 4 .IX Item "gsl_cdf_negative_binomial_Q($k, $p, $n)" .PD These functions compute the cumulative distribution functions P(k), Q(k) for the negative binomial distribution with parameters \f(CW$p\fR and \f(CW$n\fR. .ie n .IP "gsl_cdf_pascal_P($k, $p, $n)" 4 .el .IP "gsl_cdf_pascal_P($k, \f(CW$p\fR, \f(CW$n\fR)" 4 .IX Item "gsl_cdf_pascal_P($k, $p, $n)" .PD 0 .ie n .IP "gsl_cdf_pascal_Q($k, $p, $n)" 4 .el .IP "gsl_cdf_pascal_Q($k, \f(CW$p\fR, \f(CW$n\fR)" 4 .IX Item "gsl_cdf_pascal_Q($k, $p, $n)" .PD These functions compute the cumulative distribution functions P(k), Q(k) for the Pascal distribution with parameters \f(CW$p\fR and \f(CW$n\fR. .ie n .IP "gsl_cdf_hypergeometric_P($k, $n1, $n2, $t)" 4 .el .IP "gsl_cdf_hypergeometric_P($k, \f(CW$n1\fR, \f(CW$n2\fR, \f(CW$t\fR)" 4 .IX Item "gsl_cdf_hypergeometric_P($k, $n1, $n2, $t)" .PD 0 .ie n .IP "gsl_cdf_hypergeometric_Q($k, $n1, $n2, $t)" 4 .el .IP "gsl_cdf_hypergeometric_Q($k, \f(CW$n1\fR, \f(CW$n2\fR, \f(CW$t\fR)" 4 .IX Item "gsl_cdf_hypergeometric_Q($k, $n1, $n2, $t)" .PD These functions compute the cumulative distribution functions P(k), Q(k) for the hypergeometric distribution with parameters \f(CW$n1\fR, \f(CW$n2\fR and \f(CW$t\fR. .PP To import specific functions, list them in the use line. To import all function exportable by Math::GSL::CDF do .PP .Vb 1 \& use Math::GSL::CDF qw/:all/ .Ve .PP This is the list of available import tags: .IP "geometric" 4 .IX Item "geometric" .PD 0 .IP "tdist" 4 .IX Item "tdist" .IP "ugaussian" 4 .IX Item "ugaussian" .IP "rayleigh" 4 .IX Item "rayleigh" .IP "pascal" 4 .IX Item "pascal" .IP "exponential" 4 .IX Item "exponential" .IP "gumbel2" 4 .IX Item "gumbel2" .IP "gumbel1" 4 .IX Item "gumbel1" .IP "exppow" 4 .IX Item "exppow" .IP "logistic" 4 .IX Item "logistic" .IP "weibull" 4 .IX Item "weibull" .IP "gaussian" 4 .IX Item "gaussian" .IP "poisson" 4 .IX Item "poisson" .IP "beta" 4 .IX Item "beta" .IP "binomial" 4 .IX Item "binomial" .IP "laplace" 4 .IX Item "laplace" .IP "lognormal" 4 .IX Item "lognormal" .IP "cauchy" 4 .IX Item "cauchy" .IP "fdist" 4 .IX Item "fdist" .IP "chisq" 4 .IX Item "chisq" .IP "gamma" 4 .IX Item "gamma" .IP "hypergeometric" 4 .IX Item "hypergeometric" .IP "negative" 4 .IX Item "negative" .IP "pareto" 4 .IX Item "pareto" .IP "flat" 4 .IX Item "flat" .PD .PP For example the beta tag contains theses functions : gsl_cdf_beta_P, gsl_cdf_beta_Q, gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv . .PP For more information on the functions, we refer you to the \s-1GSL\s0 offcial documentation: .SH "AUTHORS" .IX Header "AUTHORS" Jonathan \*(L"Duke\*(R" Leto and Thierry Moisan .SH "COPYRIGHT AND LICENSE" .IX Header "COPYRIGHT AND LICENSE" Copyright (C) 2008\-2011 Jonathan \*(L"Duke\*(R" Leto and Thierry Moisan .PP This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.