## table of contents

doubleGBauxiliary(3) | LAPACK | doubleGBauxiliary(3) |

# NAME¶

doubleGBauxiliary# SYNOPSIS¶

## Functions¶

double precision function

**dlangb**(NORM, N, KL, KU, AB, LDAB, WORK)

**DLANGB**returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix. subroutine

**dlaqgb**(M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, EQUED)

**DLAQGB**scales a general band matrix, using row and column scaling factors computed by sgbequ.

# Detailed Description¶

This is the group of double auxiliary functions for GB matrices# Function Documentation¶

## double precision function dlangb (character NORM, integer N, integer KL, integer KU, double precision, dimension( ldab, * ) AB, integer LDAB, double precision, dimension( * ) WORK)¶

**DLANGB**returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.

**Purpose: **

DLANGB returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n by n band matrix A, with kl sub-diagonals and ku super-diagonals.

**Returns:**

DLANGB

DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

**Parameters:**

*NORM*

NORM is CHARACTER*1 Specifies the value to be returned in DLANGB as described above.

*N*

N is INTEGER The order of the matrix A. N >= 0. When N = 0, DLANGB is set to zero.

*KL*

KL is INTEGER The number of sub-diagonals of the matrix A. KL >= 0.

*KU*

KU is INTEGER The number of super-diagonals of the matrix A. KU >= 0.

*AB*

AB is DOUBLE PRECISION array, dimension (LDAB,N) The band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

*LDAB*

LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1.

*WORK*

WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I'; otherwise, WORK is not referenced.

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

December 2016

## subroutine dlaqgb (integer M, integer N, integer KL, integer KU, double precision, dimension( ldab, * ) AB, integer LDAB, double precision, dimension( * ) R, double precision, dimension( * ) C, double precision ROWCND, double precision COLCND, double precision AMAX, character EQUED)¶

**DLAQGB**scales a general band matrix, using row and column scaling factors computed by sgbequ.

**Purpose: **

DLAQGB equilibrates a general M by N band matrix A with KL subdiagonals and KU superdiagonals using the row and scaling factors in the vectors R and C.

**Parameters:**

*M*

M is INTEGER The number of rows of the matrix A. M >= 0.

*N*

N is INTEGER The number of columns of the matrix A. N >= 0.

*KL*

KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.

*KU*

KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.

*AB*

AB is DOUBLE PRECISION array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) On exit, the equilibrated matrix, in the same storage format as A. See EQUED for the form of the equilibrated matrix.

*LDAB*

LDAB is INTEGER The leading dimension of the array AB. LDA >= KL+KU+1.

*R*

R is DOUBLE PRECISION array, dimension (M) The row scale factors for A.

*C*

C is DOUBLE PRECISION array, dimension (N) The column scale factors for A.

*ROWCND*

ROWCND is DOUBLE PRECISION Ratio of the smallest R(i) to the largest R(i).

*COLCND*

COLCND is DOUBLE PRECISION Ratio of the smallest C(i) to the largest C(i).

*AMAX*

AMAX is DOUBLE PRECISION Absolute value of largest matrix entry.

*EQUED*

EQUED is CHARACTER*1 Specifies the form of equilibration that was done. = 'N': No equilibration = 'R': Row equilibration, i.e., A has been premultiplied by diag(R). = 'C': Column equilibration, i.e., A has been postmultiplied by diag(C). = 'B': Both row and column equilibration, i.e., A has been replaced by diag(R) * A * diag(C).

**Internal Parameters: **

THRESH is a threshold value used to decide if row or column scaling should be done based on the ratio of the row or column scaling factors. If ROWCND < THRESH, row scaling is done, and if COLCND < THRESH, column scaling is done. LARGE and SMALL are threshold values used to decide if row scaling should be done based on the absolute size of the largest matrix element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

December 2016

# Author¶

Generated automatically by Doxygen for LAPACK from the source code.Tue Dec 4 2018 | Version 3.8.0 |