.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.40) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" ======================================================================== .\" .IX Title "PERLEBCDIC 1" .TH PERLEBCDIC 1 "2021-09-24" "perl v5.32.1" "Perl Programmers Reference Guide" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" perlebcdic \- Considerations for running Perl on EBCDIC platforms .SH "DESCRIPTION" .IX Header "DESCRIPTION" An exploration of some of the issues facing Perl programmers on \s-1EBCDIC\s0 based computers. .PP Portions of this document that are still incomplete are marked with \s-1XXX.\s0 .PP Early Perl versions worked on some \s-1EBCDIC\s0 machines, but the last known version that ran on \s-1EBCDIC\s0 was v5.8.7, until v5.22, when the Perl core again works on z/OS. Theoretically, it could work on \s-1OS/400\s0 or Siemens' \&\s-1BS2000\s0 (or their successors), but this is untested. In v5.22 and 5.24, not all the modules found on \s-1CPAN\s0 but shipped with core Perl work on z/OS. .PP If you want to use Perl on a non\-z/OS \s-1EBCDIC\s0 machine, please let us know at . .PP Writing Perl on an \s-1EBCDIC\s0 platform is really no different than writing on an \*(L"\s-1ASCII\*(R"\s0 one, but with different underlying numbers, as we'll see shortly. You'll have to know something about those \*(L"\s-1ASCII\*(R"\s0 platforms because the documentation is biased and will frequently use example numbers that don't apply to \s-1EBCDIC.\s0 There are also very few \s-1CPAN\s0 modules that are written for \s-1EBCDIC\s0 and which don't work on \s-1ASCII\s0; instead the vast majority of \s-1CPAN\s0 modules are written for \s-1ASCII,\s0 and some may happen to work on \s-1EBCDIC,\s0 while a few have been designed to portably work on both. .PP If your code just uses the 52 letters A\-Z and a\-z, plus \s-1SPACE,\s0 the digits 0\-9, and the punctuation characters that Perl uses, plus a few controls that are denoted by escape sequences like \f(CW\*(C`\en\*(C'\fR and \f(CW\*(C`\et\*(C'\fR, then there's nothing special about using Perl, and your code may very well work on an \s-1ASCII\s0 machine without change. .PP But if you write code that uses \f(CW\*(C`\e005\*(C'\fR to mean a \s-1TAB\s0 or \f(CW\*(C`\exC1\*(C'\fR to mean an \*(L"A\*(R", or \f(CW\*(C`\exDF\*(C'\fR to mean a \*(L"ÿ\*(R" (small \f(CW"y"\fR with a diaeresis), then your code may well work on your \s-1EBCDIC\s0 platform, but not on an \&\s-1ASCII\s0 one. That's fine to do if no one will ever want to run your code on an \s-1ASCII\s0 platform; but the bias in this document will be towards writing code portable between \s-1EBCDIC\s0 and \s-1ASCII\s0 systems. Again, if every character you care about is easily enterable from your keyboard, you don't have to know anything about \s-1ASCII,\s0 but many keyboards don't easily allow you to directly enter, say, the character \f(CW\*(C`\exDF\*(C'\fR, so you have to specify it indirectly, such as by using the \f(CW"\exDF"\fR escape sequence. In those cases it's easiest to know something about the ASCII/Unicode character sets. If you know that the small \*(L"ÿ\*(R" is \f(CW\*(C`U+00FF\*(C'\fR, then you can instead specify it as \f(CW"\eN{U+FF}"\fR, and have the computer automatically translate it to \f(CW\*(C`\exDF\*(C'\fR on your platform, and leave it as \&\f(CW\*(C`\exFF\*(C'\fR on \s-1ASCII\s0 ones. Or you could specify it by name, \f(CW\*(C`\eN{LATIN SMALL LETTER Y WITH DIAERESIS\*(C'\fR and not have to know the numbers. Either way works, but both require familiarity with Unicode. .SH "COMMON CHARACTER CODE SETS" .IX Header "COMMON CHARACTER CODE SETS" .SS "\s-1ASCII\s0" .IX Subsection "ASCII" The American Standard Code for Information Interchange (\s-1ASCII\s0 or US-ASCII) is a set of integers running from 0 to 127 (decimal) that have standardized interpretations by the computers which use \s-1ASCII.\s0 For example, 65 means the letter \*(L"A\*(R". The range 0..127 can be covered by setting various bits in a 7\-bit binary digit, hence the set is sometimes referred to as \*(L"7\-bit \s-1ASCII\*(R". ASCII\s0 was described by the American National Standards Institute document \s-1ANSI X3.4\-1986.\s0 It was also described by \s-1ISO 646:1991\s0 (with localization for currency symbols). The full \s-1ASCII\s0 set is given in the table below as the first 128 elements. Languages that can be written adequately with the characters in \s-1ASCII\s0 include English, Hawaiian, Indonesian, Swahili and some Native American languages. .PP Most non-EBCDIC character sets are supersets of \s-1ASCII.\s0 That is the integers 0\-127 mean what \s-1ASCII\s0 says they mean. But integers 128 and above are specific to the character set. .PP Many of these fit entirely into 8 bits, using \s-1ASCII\s0 as 0\-127, while specifying what 128\-255 mean, and not using anything above 255. Thus, these are single-byte (or octet if you prefer) character sets. One important one (since Unicode is a superset of it) is the \s-1ISO 8859\-1\s0 character set. .SS "\s-1ISO 8859\s0" .IX Subsection "ISO 8859" The \s-1ISO 8859\-\s0\fI\f(BI\f(CB$n\f(BI\fI\fR are a collection of character code sets from the International Organization for Standardization (\s-1ISO\s0), each of which adds characters to the \s-1ASCII\s0 set that are typically found in various languages, many of which are based on the Roman, or Latin, alphabet. Most are for European languages, but there are also ones for Arabic, Greek, Hebrew, and Thai. There are good references on the web about all these. .SS "Latin 1 (\s-1ISO 8859\-1\s0)" .IX Subsection "Latin 1 (ISO 8859-1)" A particular 8\-bit extension to \s-1ASCII\s0 that includes grave and acute accented Latin characters. Languages that can employ \s-1ISO 8859\-1\s0 include all the languages covered by \s-1ASCII\s0 as well as Afrikaans, Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian, Portuguese, Spanish, and Swedish. Dutch is covered albeit without the ij ligature. French is covered too but without the oe ligature. German can use \s-1ISO 8859\-1\s0 but must do so without German-style quotation marks. This set is based on Western European extensions to \s-1ASCII\s0 and is commonly encountered in world wide web work. In \s-1IBM\s0 character code set identification terminology, \s-1ISO 8859\-1\s0 is also known as \s-1CCSID 819\s0 (or sometimes 0819 or even 00819). .SS "\s-1EBCDIC\s0" .IX Subsection "EBCDIC" The Extended Binary Coded Decimal Interchange Code refers to a large collection of single\- and multi-byte coded character sets that are quite different from \s-1ASCII\s0 and \s-1ISO 8859\-1,\s0 and are all slightly different from each other; they typically run on host computers. The \&\s-1EBCDIC\s0 encodings derive from 8\-bit byte extensions of Hollerith punched card encodings, which long predate \s-1ASCII.\s0 The layout on the cards was such that high bits were set for the upper and lower case alphabetic characters \f(CW\*(C`[a\-z]\*(C'\fR and \f(CW\*(C`[A\-Z]\*(C'\fR, but there were gaps within each Latin alphabet range, visible in the table below. These gaps can cause complications. .PP Some \s-1IBM EBCDIC\s0 character sets may be known by character code set identification numbers (\s-1CCSID\s0 numbers) or code page numbers. .PP Perl can be compiled on platforms that run any of three commonly used \s-1EBCDIC\s0 character sets, listed below. .PP \fIThe 13 variant characters\fR .IX Subsection "The 13 variant characters" .PP Among \s-1IBM EBCDIC\s0 character code sets there are 13 characters that are often mapped to different integer values. Those characters are known as the 13 \*(L"variant\*(R" characters and are: .PP .Vb 1 \& \e [ ] { } ^ ~ ! # | $ @ \` .Ve .PP When Perl is compiled for a platform, it looks at all of these characters to guess which \s-1EBCDIC\s0 character set the platform uses, and adapts itself accordingly to that platform. If the platform uses a character set that is not one of the three Perl knows about, Perl will either fail to compile, or mistakenly and silently choose one of the three. .PP The Line Feed (\s-1LF\s0) character is actually a 14th variant character, and Perl checks for that as well. .PP \fI\s-1EBCDIC\s0 code sets recognized by Perl\fR .IX Subsection "EBCDIC code sets recognized by Perl" .IP "\fB0037\fR" 4 .IX Item "0037" Character code set \s-1ID 0037\s0 is a mapping of the \s-1ASCII\s0 plus Latin\-1 characters (i.e. \s-1ISO 8859\-1\s0) to an \s-1EBCDIC\s0 set. 0037 is used in North American English locales on the \s-1OS/400\s0 operating system that runs on \s-1AS/400\s0 computers. \s-1CCSID 0037\s0 differs from \s-1ISO 8859\-1\s0 in 236 places; in other words they agree on only 20 code point values. .IP "\fB1047\fR" 4 .IX Item "1047" Character code set \s-1ID 1047\s0 is also a mapping of the \s-1ASCII\s0 plus Latin\-1 characters (i.e. \s-1ISO 8859\-1\s0) to an \s-1EBCDIC\s0 set. 1047 is used under Unix System Services for \s-1OS/390\s0 or z/OS, and OpenEdition for \s-1VM/ESA.\s0 \s-1CCSID 1047\s0 differs from \s-1CCSID 0037\s0 in eight places, and from \s-1ISO 8859\-1\s0 in 236. .IP "\fBPOSIX-BC\fR" 4 .IX Item "POSIX-BC" The \s-1EBCDIC\s0 code page in use on Siemens' \s-1BS2000\s0 system is distinct from 1047 and 0037. It is identified below as the POSIX-BC set. Like 0037 and 1047, it is the same as \s-1ISO 8859\-1\s0 in 20 code point values. .SS "Unicode code points versus \s-1EBCDIC\s0 code points" .IX Subsection "Unicode code points versus EBCDIC code points" In Unicode terminology a \fIcode point\fR is the number assigned to a character: for example, in \s-1EBCDIC\s0 the character \*(L"A\*(R" is usually assigned the number 193. In Unicode, the character \*(L"A\*(R" is assigned the number 65. All the code points in \s-1ASCII\s0 and Latin\-1 (\s-1ISO 8859\-1\s0) have the same meaning in Unicode. All three of the recognized \s-1EBCDIC\s0 code sets have 256 code points, and in each code set, all 256 code points are mapped to equivalent Latin1 code points. Obviously, \*(L"A\*(R" will map to \*(L"A\*(R", \*(L"B\*(R" => \&\*(L"B\*(R", \*(L"%\*(R" => \*(L"%\*(R", etc., for all printable characters in Latin1 and these code pages. .PP It also turns out that \s-1EBCDIC\s0 has nearly precise equivalents for the ASCII/Latin1 C0 controls and the \s-1DELETE\s0 control. (The C0 controls are those whose \s-1ASCII\s0 code points are 0..0x1F; things like \s-1TAB, ACK, BEL,\s0 etc.) A mapping is set up between these \s-1ASCII/EBCDIC\s0 controls. There isn't such a precise mapping between the C1 controls on \s-1ASCII\s0 platforms and the remaining \s-1EBCDIC\s0 controls. What has been done is to map these controls, mostly arbitrarily, to some otherwise unmatched character in the other character set. Most of these are very very rarely used nowadays in \s-1EBCDIC\s0 anyway, and their names have been dropped, without much complaint. For example the \s-1EO\s0 (Eight Ones) \s-1EBCDIC\s0 control (consisting of eight one bits = 0xFF) is mapped to the C1 \s-1APC\s0 control (0x9F), and you can't use the name \*(L"\s-1EO\*(R".\s0 .PP The \s-1EBCDIC\s0 controls provide three possible line terminator characters, \&\s-1CR\s0 (0x0D), \s-1LF\s0 (0x25), and \s-1NL\s0 (0x15). On \s-1ASCII\s0 platforms, the symbols \&\*(L"\s-1NL\*(R"\s0 and \*(L"\s-1LF\*(R"\s0 refer to the same character, but in strict \s-1EBCDIC\s0 terminology they are different ones. The \s-1EBCDIC NL\s0 is mapped to the C1 control called \*(L"\s-1NEL\*(R"\s0 (\*(L"Next Line\*(R"; here's a case where the mapping makes quite a bit of sense, and hence isn't just arbitrary). On some \s-1EBCDIC\s0 platforms, this \s-1NL\s0 or \s-1NEL\s0 is the typical line terminator. This is true of z/OS and \s-1BS2000.\s0 In these platforms, the C compilers will swap the \&\s-1LF\s0 and \s-1NEL\s0 code points, so that \f(CW"\en"\fR is 0x15, and refers to \s-1NL.\s0 Perl does that too; you can see it in the code chart below. This makes things generally \*(L"just work\*(R" without you even having to be aware that there is a swap. .SS "Unicode and \s-1UTF\s0" .IX Subsection "Unicode and UTF" \&\s-1UTF\s0 stands for \*(L"Unicode Transformation Format\*(R". \&\s-1UTF\-8\s0 is an encoding of Unicode into a sequence of 8\-bit byte chunks, based on \&\s-1ASCII\s0 and Latin\-1. The length of a sequence required to represent a Unicode code point depends on the ordinal number of that code point, with larger numbers requiring more bytes. UTF-EBCDIC is like \s-1UTF\-8,\s0 but based on \s-1EBCDIC.\s0 They are enough alike that often, casual usage will conflate the two terms, and use \*(L"\s-1UTF\-8\*(R"\s0 to mean both the \s-1UTF\-8\s0 found on \s-1ASCII\s0 platforms, and the UTF-EBCDIC found on \s-1EBCDIC\s0 ones. .PP You may see the term \*(L"invariant\*(R" character or code point. This simply means that the character has the same numeric value and representation when encoded in \s-1UTF\-8\s0 (or UTF-EBCDIC) as when not. (Note that this is a very different concept from \*(L"The 13 variant characters\*(R" mentioned above. Careful prose will use the term \*(L"\s-1UTF\-8\s0 invariant\*(R" instead of just \*(L"invariant\*(R", but most often you'll see just \&\*(L"invariant\*(R".) For example, the ordinal value of \*(L"A\*(R" is 193 in most \&\s-1EBCDIC\s0 code pages, and also is 193 when encoded in UTF-EBCDIC. All \&\s-1UTF\-8\s0 (or UTF-EBCDIC) variant code points occupy at least two bytes when encoded in \s-1UTF\-8\s0 (or UTF-EBCDIC); by definition, the \s-1UTF\-8\s0 (or UTF-EBCDIC) invariant code points are exactly one byte whether encoded in \s-1UTF\-8\s0 (or UTF-EBCDIC), or not. (By now you see why people typically just say \*(L"\s-1UTF\-8\*(R"\s0 when they also mean \*(L"UTF-EBCDIC\*(R". For the rest of this document, we'll mostly be casual about it too.) In \s-1ASCII UTF\-8,\s0 the code points corresponding to the lowest 128 ordinal numbers (0 \- 127: the \s-1ASCII\s0 characters) are invariant. In UTF-EBCDIC, there are 160 invariant characters. (If you care, the \s-1EBCDIC\s0 invariants are those characters which have \s-1ASCII\s0 equivalents, plus those that correspond to the C1 controls (128 \- 159 on \s-1ASCII\s0 platforms).) .PP A string encoded in UTF-EBCDIC may be longer (very rarely shorter) than one encoded in \s-1UTF\-8.\s0 Perl extends both \s-1UTF\-8\s0 and UTF-EBCDIC so that they can encode code points above the Unicode maximum of U+10FFFF. Both extensions are constructed to allow encoding of any code point that fits in a 64\-bit word. .PP UTF-EBCDIC is defined by Unicode Technical Report #16 (often referred to as just \s-1TR16\s0). It is defined based on \s-1CCSID 1047,\s0 not allowing for the differences for other code pages. This allows for easy interchange of text between computers running different code pages, but makes it unusable, without adaptation, for Perl on those other code pages. .PP The reason for this unusability is that a fundamental assumption of Perl is that the characters it cares about for parsing and lexical analysis are the same whether or not the text is in \s-1UTF\-8.\s0 For example, Perl expects the character \f(CW"["\fR to have the same representation, no matter if the string containing it (or program text) is \s-1UTF\-8\s0 encoded or not. To ensure this, Perl adapts UTF-EBCDIC to the particular code page so that all characters it expects to be \s-1UTF\-8\s0 invariant are in fact \s-1UTF\-8\s0 invariant. This means that text generated on a computer running one version of Perl's UTF-EBCDIC has to be translated to be intelligible to a computer running another. .PP \&\s-1TR16\s0 implies a method to extend UTF-EBCDIC to encode points up through \&\f(CW\*(C`2 ** 31 \- 1\*(C'\fR. Perl uses this method for code points up through \&\f(CW\*(C`2 ** 30 \- 1\*(C'\fR, but uses an incompatible method for larger ones, to enable it to handle much larger code points than otherwise. .SS "Using Encode" .IX Subsection "Using Encode" Starting from Perl 5.8 you can use the standard module Encode to translate from \s-1EBCDIC\s0 to Latin\-1 code points. Encode knows about more \s-1EBCDIC\s0 character sets than Perl can currently be compiled to run on. .PP .Vb 1 \& use Encode \*(Aqfrom_to\*(Aq; \& \& my %ebcdic = ( 176 => \*(Aqcp37\*(Aq, 95 => \*(Aqcp1047\*(Aq, 106 => \*(Aqposix\-bc\*(Aq ); \& \& # $a is in EBCDIC code points \& from_to($a, $ebcdic{ord \*(Aq^\*(Aq}, \*(Aqlatin1\*(Aq); \& # $a is ISO 8859\-1 code points .Ve .PP and from Latin\-1 code points to \s-1EBCDIC\s0 code points .PP .Vb 1 \& use Encode \*(Aqfrom_to\*(Aq; \& \& my %ebcdic = ( 176 => \*(Aqcp37\*(Aq, 95 => \*(Aqcp1047\*(Aq, 106 => \*(Aqposix\-bc\*(Aq ); \& \& # $a is ISO 8859\-1 code points \& from_to($a, \*(Aqlatin1\*(Aq, $ebcdic{ord \*(Aq^\*(Aq}); \& # $a is in EBCDIC code points .Ve .PP For doing I/O it is suggested that you use the autotranslating features of PerlIO, see perluniintro. .PP Since version 5.8 Perl uses the PerlIO I/O library. This enables you to use different encodings per \s-1IO\s0 channel. For example you may use .PP .Vb 9 \& use Encode; \& open($f, ">:encoding(ascii)", "test.ascii"); \& print $f "Hello World!\en"; \& open($f, ">:encoding(cp37)", "test.ebcdic"); \& print $f "Hello World!\en"; \& open($f, ">:encoding(latin1)", "test.latin1"); \& print $f "Hello World!\en"; \& open($f, ">:encoding(utf8)", "test.utf8"); \& print $f "Hello World!\en"; .Ve .PP to get four files containing \*(L"Hello World!\en\*(R" in \s-1ASCII, CP 0037 EBCDIC, ISO 8859\-1\s0 (Latin\-1) (in this example identical to \s-1ASCII\s0 since only \s-1ASCII\s0 characters were printed), and UTF-EBCDIC (in this example identical to normal \s-1EBCDIC\s0 since only characters that don't differ between \s-1EBCDIC\s0 and UTF-EBCDIC were printed). See the documentation of Encode::PerlIO for details. .PP As the PerlIO layer uses raw \s-1IO\s0 (bytes) internally, all this totally ignores things like the type of your filesystem (\s-1ASCII\s0 or \s-1EBCDIC\s0). .SH "SINGLE OCTET TABLES" .IX Header "SINGLE OCTET TABLES" The following tables list the \s-1ASCII\s0 and Latin 1 ordered sets including the subsets: C0 controls (0..31), \s-1ASCII\s0 graphics (32..7e), delete (7f), C1 controls (80..9f), and Latin\-1 (a.k.a. \s-1ISO 8859\-1\s0) (a0..ff). In the table names of the Latin 1 extensions to \s-1ASCII\s0 have been labelled with character names roughly corresponding to \fIThe Unicode Standard, Version 6.1\fR albeit with substitutions such as \f(CW\*(C`s/LATIN//\*(C'\fR and \f(CW\*(C`s/VULGAR//\*(C'\fR in all cases; \&\f(CW\*(C`s/CAPITAL LETTER//\*(C'\fR in some cases; and \&\f(CW\*(C`s/SMALL LETTER ([A\-Z])/\el$1/\*(C'\fR in some other cases. Controls are listed using their Unicode 6.2 abbreviations. The differences between the 0037 and 1047 sets are flagged with \f(CW\*(C`**\*(C'\fR. The differences between the 1047 and POSIX-BC sets are flagged with \f(CW\*(C`##.\*(C'\fR All \f(CW\*(C`ord()\*(C'\fR numbers listed are decimal. If you would rather see this table listing octal values, then run the table (that is, the pod source text of this document, since this recipe may not work with a pod2_other_format translation) through: .IP "recipe 0" 4 .IX Item "recipe 0" .PP .Vb 3 \& perl \-ne \*(Aqif(/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)/)\*(Aq \e \& \-e \*(Aq{printf("%s%\-5.03o%\-5.03o%\-5.03o%.03o\en",$1,$2,$3,$4,$5)}\*(Aq \e \& perlebcdic.pod .Ve .PP If you want to retain the UTF-x code points then in script form you might want to write: .IP "recipe 1" 4 .IX Item "recipe 1" .PP .Vb 10 \& open(FH,") { \& if (/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\e.?(\ed*) \& \es+(\ed+)\e.?(\ed*)/x) \& { \& if ($7 ne \*(Aq\*(Aq && $9 ne \*(Aq\*(Aq) { \& printf( \& "%s%\-5.03o%\-5.03o%\-5.03o%\-5.03o%\-3o.%\-5o%\-3o.%.03o\en", \& $1,$2,$3,$4,$5,$6,$7,$8,$9); \& } \& elsif ($7 ne \*(Aq\*(Aq) { \& printf("%s%\-5.03o%\-5.03o%\-5.03o%\-5.03o%\-3o.%\-5o%.03o\en", \& $1,$2,$3,$4,$5,$6,$7,$8); \& } \& else { \& printf("%s%\-5.03o%\-5.03o%\-5.03o%\-5.03o%\-5.03o%.03o\en", \& $1,$2,$3,$4,$5,$6,$8); \& } \& } \& } .Ve .PP If you would rather see this table listing hexadecimal values then run the table through: .IP "recipe 2" 4 .IX Item "recipe 2" .PP .Vb 3 \& perl \-ne \*(Aqif(/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)/)\*(Aq \e \& \-e \*(Aq{printf("%s%\-5.02X%\-5.02X%\-5.02X%.02X\en",$1,$2,$3,$4,$5)}\*(Aq \e \& perlebcdic.pod .Ve .PP Or, in order to retain the UTF-x code points in hexadecimal: .IP "recipe 3" 4 .IX Item "recipe 3" .PP .Vb 10 \& open(FH,") { \& if (/(.{29})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\e.?(\ed*) \& \es+(\ed+)\e.?(\ed*)/x) \& { \& if ($7 ne \*(Aq\*(Aq && $9 ne \*(Aq\*(Aq) { \& printf( \& "%s%\-5.02X%\-5.02X%\-5.02X%\-5.02X%\-2X.%\-6.02X%02X.%02X\en", \& $1,$2,$3,$4,$5,$6,$7,$8,$9); \& } \& elsif ($7 ne \*(Aq\*(Aq) { \& printf("%s%\-5.02X%\-5.02X%\-5.02X%\-5.02X%\-2X.%\-6.02X%02X\en", \& $1,$2,$3,$4,$5,$6,$7,$8); \& } \& else { \& printf("%s%\-5.02X%\-5.02X%\-5.02X%\-5.02X%\-5.02X%02X\en", \& $1,$2,$3,$4,$5,$6,$8); \& } \& } \& } \& \& \& ISO \& 8859\-1 POS\- CCSID \& CCSID CCSID CCSID IX\- 1047 \& chr 0819 0037 1047 BC UTF\-8 UTF\-EBCDIC \& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \& 0 0 0 0 0 0 \& 1 1 1 1 1 1 \& 2 2 2 2 2 2 \& 3 3 3 3 3 3 \& 4 55 55 55 4 55 \& 5 45 45 45 5 45 \& 6 46 46 46 6 46 \& 7 47 47 47 7 47 \& 8 22 22 22 8 22 \& 9 5 5 5 9 5 \& 10 37 21 21 10 21 ** \& 11 11 11 11 11 11 \& 12 12 12 12 12 12 \& 13 13 13 13 13 13 \& 14 14 14 14 14 14 \& 15 15 15 15 15 15 \& 16 16 16 16 16 16 \& 17 17 17 17 17 17 \& 18 18 18 18 18 18 \& 19 19 19 19 19 19 \& 20 60 60 60 20 60 \& 21 61 61 61 21 61 \& 22 50 50 50 22 50 \& 23 38 38 38 23 38 \& 24 24 24 24 24 24 \& 25 25 25 25 25 25 \& 26 63 63 63 26 63 \& 27 39 39 39 27 39 \& 28 28 28 28 28 28 \& 29 29 29 29 29 29 \& 30 30 30 30 30 30 \& 31 31 31 31 31 31 \& 32 64 64 64 32 64 \& ! 33 90 90 90 33 90 \& " 34 127 127 127 34 127 \& # 35 123 123 123 35 123 \& $ 36 91 91 91 36 91 \& % 37 108 108 108 37 108 \& & 38 80 80 80 38 80 \& \*(Aq 39 125 125 125 39 125 \& ( 40 77 77 77 40 77 \& ) 41 93 93 93 41 93 \& * 42 92 92 92 42 92 \& + 43 78 78 78 43 78 \& , 44 107 107 107 44 107 \& \- 45 96 96 96 45 96 \& . 46 75 75 75 46 75 \& / 47 97 97 97 47 97 \& 0 48 240 240 240 48 240 \& 1 49 241 241 241 49 241 \& 2 50 242 242 242 50 242 \& 3 51 243 243 243 51 243 \& 4 52 244 244 244 52 244 \& 5 53 245 245 245 53 245 \& 6 54 246 246 246 54 246 \& 7 55 247 247 247 55 247 \& 8 56 248 248 248 56 248 \& 9 57 249 249 249 57 249 \& : 58 122 122 122 58 122 \& ; 59 94 94 94 59 94 \& < 60 76 76 76 60 76 \& = 61 126 126 126 61 126 \& > 62 110 110 110 62 110 \& ? 63 111 111 111 63 111 \& @ 64 124 124 124 64 124 \& A 65 193 193 193 65 193 \& B 66 194 194 194 66 194 \& C 67 195 195 195 67 195 \& D 68 196 196 196 68 196 \& E 69 197 197 197 69 197 \& F 70 198 198 198 70 198 \& G 71 199 199 199 71 199 \& H 72 200 200 200 72 200 \& I 73 201 201 201 73 201 \& J 74 209 209 209 74 209 \& K 75 210 210 210 75 210 \& L 76 211 211 211 76 211 \& M 77 212 212 212 77 212 \& N 78 213 213 213 78 213 \& O 79 214 214 214 79 214 \& P 80 215 215 215 80 215 \& Q 81 216 216 216 81 216 \& R 82 217 217 217 82 217 \& S 83 226 226 226 83 226 \& T 84 227 227 227 84 227 \& U 85 228 228 228 85 228 \& V 86 229 229 229 86 229 \& W 87 230 230 230 87 230 \& X 88 231 231 231 88 231 \& Y 89 232 232 232 89 232 \& Z 90 233 233 233 90 233 \& [ 91 186 173 187 91 173 ** ## \& \e 92 224 224 188 92 224 ## \& ] 93 187 189 189 93 189 ** \& ^ 94 176 95 106 94 95 ** ## \& _ 95 109 109 109 95 109 \& \` 96 121 121 74 96 121 ## \& a 97 129 129 129 97 129 \& b 98 130 130 130 98 130 \& c 99 131 131 131 99 131 \& d 100 132 132 132 100 132 \& e 101 133 133 133 101 133 \& f 102 134 134 134 102 134 \& g 103 135 135 135 103 135 \& h 104 136 136 136 104 136 \& i 105 137 137 137 105 137 \& j 106 145 145 145 106 145 \& k 107 146 146 146 107 146 \& l 108 147 147 147 108 147 \& m 109 148 148 148 109 148 \& n 110 149 149 149 110 149 \& o 111 150 150 150 111 150 \& p 112 151 151 151 112 151 \& q 113 152 152 152 113 152 \& r 114 153 153 153 114 153 \& s 115 162 162 162 115 162 \& t 116 163 163 163 116 163 \& u 117 164 164 164 117 164 \& v 118 165 165 165 118 165 \& w 119 166 166 166 119 166 \& x 120 167 167 167 120 167 \& y 121 168 168 168 121 168 \& z 122 169 169 169 122 169 \& { 123 192 192 251 123 192 ## \& | 124 79 79 79 124 79 \& } 125 208 208 253 125 208 ## \& ~ 126 161 161 255 126 161 ## \& 127 7 7 7 127 7 \& 128 32 32 32 194.128 32 \& 129 33 33 33 194.129 33 \& 130 34 34 34 194.130 34 \& 131 35 35 35 194.131 35 \& 132 36 36 36 194.132 36 \& 133 21 37 37 194.133 37 ** \& 134 6 6 6 194.134 6 \& 135 23 23 23 194.135 23 \& 136 40 40 40 194.136 40 \& 137 41 41 41 194.137 41 \& 138 42 42 42 194.138 42 \& 139 43 43 43 194.139 43 \& 140 44 44 44 194.140 44 \& 141 9 9 9 194.141 9 \& 142 10 10 10 194.142 10 \& 143 27 27 27 194.143 27 \& 144 48 48 48 194.144 48 \& 145 49 49 49 194.145 49 \& 146 26 26 26 194.146 26 \& 147 51 51 51 194.147 51 \& 148 52 52 52 194.148 52 \& 149 53 53 53 194.149 53 \& 150 54 54 54 194.150 54 \& 151 8 8 8 194.151 8 \& 152 56 56 56 194.152 56 \& 153 57 57 57 194.153 57 \& 154 58 58 58 194.154 58 \& 155 59 59 59 194.155 59 \& 156 4 4 4 194.156 4 \& 157 20 20 20 194.157 20 \& 158 62 62 62 194.158 62 \& 159 255 255 95 194.159 255 ## \& 160 65 65 65 194.160 128.65 \& 161 170 170 170 194.161 128.66 \& 162 74 74 176 194.162 128.67 ## \& 163 177 177 177 194.163 128.68 \& 164 159 159 159 194.164 128.69 \& 165 178 178 178 194.165 128.70 \& 166 106 106 208 194.166 128.71 ## \&
167 181 181 181 194.167 128.72 \& 168 189 187 121 194.168 128.73 ** ## \& 169 180 180 180 194.169 128.74 \& 170 154 154 154 194.170 128.81 \& 171 138 138 138 194.171 128.82 \& 172 95 176 186 194.172 128.83 ** ## \& 173 202 202 202 194.173 128.84 \& 174 175 175 175 194.174 128.85 \& 175 188 188 161 194.175 128.86 ## \& 176 144 144 144 194.176 128.87 \& 177 143 143 143 194.177 128.88 \& 178 234 234 234 194.178 128.89 \& 179 250 250 250 194.179 128.98 \& 180 190 190 190 194.180 128.99 \& 181 160 160 160 194.181 128.100 \& 182 182 182 182 194.182 128.101 \& 183 179 179 179 194.183 128.102 \& 184 157 157 157 194.184 128.103 \& 185 218 218 218 194.185 128.104 \& 186 155 155 155 194.186 128.105 \& 187 139 139 139 194.187 128.106 \& 188 183 183 183 194.188 128.112 \& 189 184 184 184 194.189 128.113 \& 190 185 185 185 194.190 128.114 \& 191 171 171 171 194.191 128.115 \& 192 100 100 100 195.128 138.65 \& 193 101 101 101 195.129 138.66 \& 194 98 98 98 195.130 138.67 \& 195 102 102 102 195.131 138.68 \& 196 99 99 99 195.132 138.69 \& 197 103 103 103 195.133 138.70 \& 198 158 158 158 195.134 138.71 \& 199 104 104 104 195.135 138.72 \& 200 116 116 116 195.136 138.73 \& 201 113 113 113 195.137 138.74 \& 202 114 114 114 195.138 138.81 \& 203 115 115 115 195.139 138.82 \& 204 120 120 120 195.140 138.83 \& 205 117 117 117 195.141 138.84 \& 206 118 118 118 195.142 138.85 \& 207 119 119 119 195.143 138.86 \& 208 172 172 172 195.144 138.87 \& 209 105 105 105 195.145 138.88 \& 210 237 237 237 195.146 138.89 \& 211 238 238 238 195.147 138.98 \& 212 235 235 235 195.148 138.99 \& 213 239 239 239 195.149 138.100 \& 214 236 236 236 195.150 138.101 \& 215 191 191 191 195.151 138.102 \& 216 128 128 128 195.152 138.103 \& 217 253 253 224 195.153 138.104 ## \& 218 254 254 254 195.154 138.105 \& 219 251 251 221 195.155 138.106 ## \& 220 252 252 252 195.156 138.112 \& 221 173 186 173 195.157 138.113 ** ## \& 222 174 174 174 195.158 138.114 \& 223 89 89 89 195.159 138.115 \& 224 68 68 68 195.160 139.65 \& 225 69 69 69 195.161 139.66 \& 226 66 66 66 195.162 139.67 \& 227 70 70 70 195.163 139.68 \& 228 67 67 67 195.164 139.69 \& 229 71 71 71 195.165 139.70 \& 230 156 156 156 195.166 139.71 \& 231 72 72 72 195.167 139.72 \& 232 84 84 84 195.168 139.73 \& 233 81 81 81 195.169 139.74 \& 234 82 82 82 195.170 139.81 \& 235 83 83 83 195.171 139.82 \& 236 88 88 88 195.172 139.83 \& 237 85 85 85 195.173 139.84 \& 238 86 86 86 195.174 139.85 \& 239 87 87 87 195.175 139.86 \& 240 140 140 140 195.176 139.87 \& 241 73 73 73 195.177 139.88 \& 242 205 205 205 195.178 139.89 \& 243 206 206 206 195.179 139.98 \& 244 203 203 203 195.180 139.99 \& 245 207 207 207 195.181 139.100 \& 246 204 204 204 195.182 139.101 \& 247 225 225 225 195.183 139.102 \& 248 112 112 112 195.184 139.103 \& 249 221 221 192 195.185 139.104 ## \& 250 222 222 222 195.186 139.105 \& 251 219 219 219 195.187 139.106 \& 252 220 220 220 195.188 139.112 \& 253 141 141 141 195.189 139.113 \& 254 142 142 142 195.190 139.114 \& 255 223 223 223 195.191 139.115 .Ve .PP If you would rather see the above table in \s-1CCSID 0037\s0 order rather than \&\s-1ASCII +\s0 Latin\-1 order then run the table through: .IP "recipe 4" 4 .IX Item "recipe 4" .PP .Vb 6 \& perl \e \& \-ne \*(Aqif(/.{29}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}/)\*(Aq\e \& \-e \*(Aq{push(@l,$_)}\*(Aq \e \& \-e \*(AqEND{print map{$_\->[0]}\*(Aq \e \& \-e \*(Aq sort{$a\->[1] <=> $b\->[1]}\*(Aq \e \& \-e \*(Aq map{[$_,substr($_,34,3)]}@l;}\*(Aq perlebcdic.pod .Ve .PP If you would rather see it in \s-1CCSID 1047\s0 order then change the number 34 in the last line to 39, like this: .IP "recipe 5" 4 .IX Item "recipe 5" .PP .Vb 6 \& perl \e \& \-ne \*(Aqif(/.{29}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}/)\*(Aq\e \& \-e \*(Aq{push(@l,$_)}\*(Aq \e \& \-e \*(AqEND{print map{$_\->[0]}\*(Aq \e \& \-e \*(Aq sort{$a\->[1] <=> $b\->[1]}\*(Aq \e \& \-e \*(Aq map{[$_,substr($_,39,3)]}@l;}\*(Aq perlebcdic.pod .Ve .PP If you would rather see it in POSIX-BC order then change the number 34 in the last line to 44, like this: .IP "recipe 6" 4 .IX Item "recipe 6" .PP .Vb 6 \& perl \e \& \-ne \*(Aqif(/.{29}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}\es{2,4}\ed{1,3}/)\*(Aq\e \& \-e \*(Aq{push(@l,$_)}\*(Aq \e \& \-e \*(AqEND{print map{$_\->[0]}\*(Aq \e \& \-e \*(Aq sort{$a\->[1] <=> $b\->[1]}\*(Aq \e \& \-e \*(Aq map{[$_,substr($_,44,3)]}@l;}\*(Aq perlebcdic.pod .Ve .SS "Table in hex, sorted in 1047 order" .IX Subsection "Table in hex, sorted in 1047 order" Since this document was first written, the convention has become more and more to use hexadecimal notation for code points. To do this with the recipes and to also sort is a multi-step process, so here, for convenience, is the table from above, re-sorted to be in Code Page 1047 order, and using hex notation. .PP .Vb 10 \& ISO \& 8859\-1 POS\- CCSID \& CCSID CCSID CCSID IX\- 1047 \& chr 0819 0037 1047 BC UTF\-8 UTF\-EBCDIC \& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \& 00 00 00 00 00 00 \& 01 01 01 01 01 01 \& 02 02 02 02 02 02 \& 03 03 03 03 03 03 \& 9C 04 04 04 C2.9C 04 \& 09 05 05 05 09 05 \& 86 06 06 06 C2.86 06 \& 7F 07 07 07 7F 07 \& 97 08 08 08 C2.97 08 \& 8D 09 09 09 C2.8D 09 \& 8E 0A 0A 0A C2.8E 0A \& 0B 0B 0B 0B 0B 0B \& 0C 0C 0C 0C 0C 0C \& 0D 0D 0D 0D 0D 0D \& 0E 0E 0E 0E 0E 0E \& 0F 0F 0F 0F 0F 0F \& 10 10 10 10 10 10 \& 11 11 11 11 11 11 \& 12 12 12 12 12 12 \& 13 13 13 13 13 13 \& 9D 14 14 14 C2.9D 14 \& 0A 25 15 15 0A 15 ** \& 08 16 16 16 08 16 \& 87 17 17 17 C2.87 17 \& 18 18 18 18 18 18 \& 19 19 19 19 19 19 \& 92 1A 1A 1A C2.92 1A \& 8F 1B 1B 1B C2.8F 1B \& 1C 1C 1C 1C 1C 1C \& 1D 1D 1D 1D 1D 1D \& 1E 1E 1E 1E 1E 1E \& 1F 1F 1F 1F 1F 1F \& 80 20 20 20 C2.80 20 \& 81 21 21 21 C2.81 21 \& 82 22 22 22 C2.82 22 \& 83 23 23 23 C2.83 23 \& 84 24 24 24 C2.84 24 \& 85 15 25 25 C2.85 25 ** \& 17 26 26 26 17 26 \& 1B 27 27 27 1B 27 \& 88 28 28 28 C2.88 28 \& 89 29 29 29 C2.89 29 \& 8A 2A 2A 2A C2.8A 2A \& 8B 2B 2B 2B C2.8B 2B \& 8C 2C 2C 2C C2.8C 2C \& 05 2D 2D 2D 05 2D \& 06 2E 2E 2E 06 2E \& 07 2F 2F 2F 07 2F \& 90 30 30 30 C2.90 30 \& 91 31 31 31 C2.91 31 \& 16 32 32 32 16 32 \& 93 33 33 33 C2.93 33 \& 94 34 34 34 C2.94 34 \& 95 35 35 35 C2.95 35 \& 96 36 36 36 C2.96 36 \& 04 37 37 37 04 37 \& 98 38 38 38 C2.98 38 \& 99 39 39 39 C2.99 39 \& 9A 3A 3A 3A C2.9A 3A \& 9B 3B 3B 3B C2.9B 3B \& 14 3C 3C 3C 14 3C \& 15 3D 3D 3D 15 3D \& 9E 3E 3E 3E C2.9E 3E \& 1A 3F 3F 3F 1A 3F \& 20 40 40 40 20 40 \& A0 41 41 41 C2.A0 80.41 \& E2 42 42 42 C3.A2 8B.43 \& E4 43 43 43 C3.A4 8B.45 \& E0 44 44 44 C3.A0 8B.41 \& E1 45 45 45 C3.A1 8B.42 \& E3 46 46 46 C3.A3 8B.44 \& E5 47 47 47 C3.A5 8B.46 \& E7 48 48 48 C3.A7 8B.48 \& F1 49 49 49 C3.B1 8B.58 \& A2 4A 4A B0 C2.A2 80.43 ## \& . 2E 4B 4B 4B 2E 4B \& < 3C 4C 4C 4C 3C 4C \& ( 28 4D 4D 4D 28 4D \& + 2B 4E 4E 4E 2B 4E \& | 7C 4F 4F 4F 7C 4F \& & 26 50 50 50 26 50 \& E9 51 51 51 C3.A9 8B.4A \& EA 52 52 52 C3.AA 8B.51 \& EB 53 53 53 C3.AB 8B.52 \& E8 54 54 54 C3.A8 8B.49 \& ED 55 55 55 C3.AD 8B.54 \& EE 56 56 56 C3.AE 8B.55 \& EF 57 57 57 C3.AF 8B.56 \& EC 58 58 58 C3.AC 8B.53 \& DF 59 59 59 C3.9F 8A.73 \& ! 21 5A 5A 5A 21 5A \& $ 24 5B 5B 5B 24 5B \& * 2A 5C 5C 5C 2A 5C \& ) 29 5D 5D 5D 29 5D \& ; 3B 5E 5E 5E 3B 5E \& ^ 5E B0 5F 6A 5E 5F ** ## \& \- 2D 60 60 60 2D 60 \& / 2F 61 61 61 2F 61 \& C2 62 62 62 C3.82 8A.43 \& C4 63 63 63 C3.84 8A.45 \& C0 64 64 64 C3.80 8A.41 \& C1 65 65 65 C3.81 8A.42 \& C3 66 66 66 C3.83 8A.44 \& C5 67 67 67 C3.85 8A.46 \& C7 68 68 68 C3.87 8A.48 \& D1 69 69 69 C3.91 8A.58 \& A6 6A 6A D0 C2.A6 80.47 ## \& , 2C 6B 6B 6B 2C 6B \& % 25 6C 6C 6C 25 6C \& _ 5F 6D 6D 6D 5F 6D \& > 3E 6E 6E 6E 3E 6E \& ? 3F 6F 6F 6F 3F 6F \& F8 70 70 70 C3.B8 8B.67 \& C9 71 71 71 C3.89 8A.4A \& CA 72 72 72 C3.8A 8A.51 \& CB 73 73 73 C3.8B 8A.52 \& C8 74 74 74 C3.88 8A.49 \& CD 75 75 75 C3.8D 8A.54 \& CE 76 76 76 C3.8E 8A.55 \& CF 77 77 77 C3.8F 8A.56 \& CC 78 78 78 C3.8C 8A.53 \& \` 60 79 79 4A 60 79 ## \& : 3A 7A 7A 7A 3A 7A \& # 23 7B 7B 7B 23 7B \& @ 40 7C 7C 7C 40 7C \& \*(Aq 27 7D 7D 7D 27 7D \& = 3D 7E 7E 7E 3D 7E \& " 22 7F 7F 7F 22 7F \& D8 80 80 80 C3.98 8A.67 \& a 61 81 81 81 61 81 \& b 62 82 82 82 62 82 \& c 63 83 83 83 63 83 \& d 64 84 84 84 64 84 \& e 65 85 85 85 65 85 \& f 66 86 86 86 66 86 \& g 67 87 87 87 67 87 \& h 68 88 88 88 68 88 \& i 69 89 89 89 69 89 \& AB 8A 8A 8A C2.AB 80.52 \& BB 8B 8B 8B C2.BB 80.6A \& F0 8C 8C 8C C3.B0 8B.57 \& FD 8D 8D 8D C3.BD 8B.71 \& FE 8E 8E 8E C3.BE 8B.72 \& B1 8F 8F 8F C2.B1 80.58 \& B0 90 90 90 C2.B0 80.57 \& j 6A 91 91 91 6A 91 \& k 6B 92 92 92 6B 92 \& l 6C 93 93 93 6C 93 \& m 6D 94 94 94 6D 94 \& n 6E 95 95 95 6E 95 \& o 6F 96 96 96 6F 96 \& p 70 97 97 97 70 97 \& q 71 98 98 98 71 98 \& r 72 99 99 99 72 99 \& AA 9A 9A 9A C2.AA 80.51 \& BA 9B 9B 9B C2.BA 80.69 \& E6 9C 9C 9C C3.A6 8B.47 \& B8 9D 9D 9D C2.B8 80.67 \& C6 9E 9E 9E C3.86 8A.47 \& A4 9F 9F 9F C2.A4 80.45 \& B5 A0 A0 A0 C2.B5 80.64 \& ~ 7E A1 A1 FF 7E A1 ## \& s 73 A2 A2 A2 73 A2 \& t 74 A3 A3 A3 74 A3 \& u 75 A4 A4 A4 75 A4 \& v 76 A5 A5 A5 76 A5 \& w 77 A6 A6 A6 77 A6 \& x 78 A7 A7 A7 78 A7 \& y 79 A8 A8 A8 79 A8 \& z 7A A9 A9 A9 7A A9 \& A1 AA AA AA C2.A1 80.42 \& BF AB AB AB C2.BF 80.73 \& D0 AC AC AC C3.90 8A.57 \& [ 5B BA AD BB 5B AD ** ## \& DE AE AE AE C3.9E 8A.72 \& AE AF AF AF C2.AE 80.55 \& AC 5F B0 BA C2.AC 80.53 ** ## \& A3 B1 B1 B1 C2.A3 80.44 \& A5 B2 B2 B2 C2.A5 80.46 \& B7 B3 B3 B3 C2.B7 80.66 \& A9 B4 B4 B4 C2.A9 80.4A \&
A7 B5 B5 B5 C2.A7 80.48 \& B6 B6 B6 B6 C2.B6 80.65 \& BC B7 B7 B7 C2.BC 80.70 \& BD B8 B8 B8 C2.BD 80.71 \& BE B9 B9 B9 C2.BE 80.72 \& DD AD BA AD C3.9D 8A.71 ** ## \& A8 BD BB 79 C2.A8 80.49 ** ## \& AF BC BC A1 C2.AF 80.56 ## \& ] 5D BB BD BD 5D BD ** \& B4 BE BE BE C2.B4 80.63 \& D7 BF BF BF C3.97 8A.66 \& { 7B C0 C0 FB 7B C0 ## \& A 41 C1 C1 C1 41 C1 \& B 42 C2 C2 C2 42 C2 \& C 43 C3 C3 C3 43 C3 \& D 44 C4 C4 C4 44 C4 \& E 45 C5 C5 C5 45 C5 \& F 46 C6 C6 C6 46 C6 \& G 47 C7 C7 C7 47 C7 \& H 48 C8 C8 C8 48 C8 \& I 49 C9 C9 C9 49 C9 \& AD CA CA CA C2.AD 80.54 \& F4 CB CB CB C3.B4 8B.63 \& F6 CC CC CC C3.B6 8B.65 \& F2 CD CD CD C3.B2 8B.59 \& F3 CE CE CE C3.B3 8B.62 \& F5 CF CF CF C3.B5 8B.64 \& } 7D D0 D0 FD 7D D0 ## \& J 4A D1 D1 D1 4A D1 \& K 4B D2 D2 D2 4B D2 \& L 4C D3 D3 D3 4C D3 \& M 4D D4 D4 D4 4D D4 \& N 4E D5 D5 D5 4E D5 \& O 4F D6 D6 D6 4F D6 \& P 50 D7 D7 D7 50 D7 \& Q 51 D8 D8 D8 51 D8 \& R 52 D9 D9 D9 52 D9 \& B9 DA DA DA C2.B9 80.68 \& FB DB DB DB C3.BB 8B.6A \& FC DC DC DC C3.BC 8B.70 \& F9 DD DD C0 C3.B9 8B.68 ## \& FA DE DE DE C3.BA 8B.69 \& FF DF DF DF C3.BF 8B.73 \& \e 5C E0 E0 BC 5C E0 ## \& F7 E1 E1 E1 C3.B7 8B.66 \& S 53 E2 E2 E2 53 E2 \& T 54 E3 E3 E3 54 E3 \& U 55 E4 E4 E4 55 E4 \& V 56 E5 E5 E5 56 E5 \& W 57 E6 E6 E6 57 E6 \& X 58 E7 E7 E7 58 E7 \& Y 59 E8 E8 E8 59 E8 \& Z 5A E9 E9 E9 5A E9 \& B2 EA EA EA C2.B2 80.59 \& D4 EB EB EB C3.94 8A.63 \& D6 EC EC EC C3.96 8A.65 \& D2 ED ED ED C3.92 8A.59 \& D3 EE EE EE C3.93 8A.62 \& D5 EF EF EF C3.95 8A.64 \& 0 30 F0 F0 F0 30 F0 \& 1 31 F1 F1 F1 31 F1 \& 2 32 F2 F2 F2 32 F2 \& 3 33 F3 F3 F3 33 F3 \& 4 34 F4 F4 F4 34 F4 \& 5 35 F5 F5 F5 35 F5 \& 6 36 F6 F6 F6 36 F6 \& 7 37 F7 F7 F7 37 F7 \& 8 38 F8 F8 F8 38 F8 \& 9 39 F9 F9 F9 39 F9 \& B3 FA FA FA C2.B3 80.62 \& DB FB FB DD C3.9B 8A.6A ## \& DC FC FC FC C3.9C 8A.70 \& D9 FD FD E0 C3.99 8A.68 ## \& DA FE FE FE C3.9A 8A.69 \& 9F FF FF 5F C2.9F FF ## .Ve .SH "IDENTIFYING CHARACTER CODE SETS" .IX Header "IDENTIFYING CHARACTER CODE SETS" It is possible to determine which character set you are operating under. But first you need to be really really sure you need to do this. Your code will be simpler and probably just as portable if you don't have to test the character set and do different things, depending. There are actually only very few circumstances where it's not easy to write straight-line code portable to all character sets. See \&\*(L"Unicode and \s-1EBCDIC\*(R"\s0 in perluniintro for how to portably specify characters. .PP But there are some cases where you may want to know which character set you are running under. One possible example is doing sorting in inner loops where performance is critical. .PP To determine if you are running under \s-1ASCII\s0 or \s-1EBCDIC,\s0 you can use the return value of \f(CW\*(C`ord()\*(C'\fR or \f(CW\*(C`chr()\*(C'\fR to test one or more character values. For example: .PP .Vb 4 \& $is_ascii = "A" eq chr(65); \& $is_ebcdic = "A" eq chr(193); \& $is_ascii = ord("A") == 65; \& $is_ebcdic = ord("A") == 193; .Ve .PP There's even less need to distinguish between \s-1EBCDIC\s0 code pages, but to do so try looking at one or more of the characters that differ between them. .PP .Vb 4 \& $is_ascii = ord(\*(Aq[\*(Aq) == 91; \& $is_ebcdic_37 = ord(\*(Aq[\*(Aq) == 186; \& $is_ebcdic_1047 = ord(\*(Aq[\*(Aq) == 173; \& $is_ebcdic_POSIX_BC = ord(\*(Aq[\*(Aq) == 187; .Ve .PP However, it would be unwise to write tests such as: .PP .Vb 2 \& $is_ascii = "\er" ne chr(13); # WRONG \& $is_ascii = "\en" ne chr(10); # ILL ADVISED .Ve .PP Obviously the first of these will fail to distinguish most \s-1ASCII\s0 platforms from either a \s-1CCSID 0037,\s0 a 1047, or a POSIX-BC \s-1EBCDIC\s0 platform since \f(CW\*(C`"\er" eq chr(13)\*(C'\fR under all of those coded character sets. But note too that because \f(CW"\en"\fR is \f(CW\*(C`chr(13)\*(C'\fR and \f(CW"\er"\fR is \&\f(CW\*(C`chr(10)\*(C'\fR on old Macintosh (which is an \s-1ASCII\s0 platform) the second \&\f(CW$is_ascii\fR test will lead to trouble there. .PP To determine whether or not perl was built under an \s-1EBCDIC\s0 code page you can use the Config module like so: .PP .Vb 2 \& use Config; \& $is_ebcdic = $Config{\*(Aqebcdic\*(Aq} eq \*(Aqdefine\*(Aq; .Ve .SH "CONVERSIONS" .IX Header "CONVERSIONS" .ie n .SS """utf8::unicode_to_native()"" and ""utf8::native_to_unicode()""" .el .SS "\f(CWutf8::unicode_to_native()\fP and \f(CWutf8::native_to_unicode()\fP" .IX Subsection "utf8::unicode_to_native() and utf8::native_to_unicode()" These functions take an input numeric code point in one encoding and return what its equivalent value is in the other. .PP See utf8. .SS "tr///" .IX Subsection "tr///" In order to convert a string of characters from one character set to another a simple list of numbers, such as in the right columns in the above table, along with Perl's \f(CW\*(C`tr///\*(C'\fR operator is all that is needed. The data in the table are in ASCII/Latin1 order, hence the \s-1EBCDIC\s0 columns provide easy-to-use ASCII/Latin1 to \s-1EBCDIC\s0 operations that are also easily reversed. .PP For example, to convert ASCII/Latin1 to code page 037 take the output of the second numbers column from the output of recipe 2 (modified to add \&\f(CW"\e"\fR characters), and use it in \f(CW\*(C`tr///\*(C'\fR like so: .PP .Vb 10 \& $cp_037 = \& \*(Aq\ex00\ex01\ex02\ex03\ex37\ex2D\ex2E\ex2F\ex16\ex05\ex25\ex0B\ex0C\ex0D\ex0E\ex0F\*(Aq . \& \*(Aq\ex10\ex11\ex12\ex13\ex3C\ex3D\ex32\ex26\ex18\ex19\ex3F\ex27\ex1C\ex1D\ex1E\ex1F\*(Aq . \& \*(Aq\ex40\ex5A\ex7F\ex7B\ex5B\ex6C\ex50\ex7D\ex4D\ex5D\ex5C\ex4E\ex6B\ex60\ex4B\ex61\*(Aq . \& \*(Aq\exF0\exF1\exF2\exF3\exF4\exF5\exF6\exF7\exF8\exF9\ex7A\ex5E\ex4C\ex7E\ex6E\ex6F\*(Aq . \& \*(Aq\ex7C\exC1\exC2\exC3\exC4\exC5\exC6\exC7\exC8\exC9\exD1\exD2\exD3\exD4\exD5\exD6\*(Aq . \& \*(Aq\exD7\exD8\exD9\exE2\exE3\exE4\exE5\exE6\exE7\exE8\exE9\exBA\exE0\exBB\exB0\ex6D\*(Aq . \& \*(Aq\ex79\ex81\ex82\ex83\ex84\ex85\ex86\ex87\ex88\ex89\ex91\ex92\ex93\ex94\ex95\ex96\*(Aq . \& \*(Aq\ex97\ex98\ex99\exA2\exA3\exA4\exA5\exA6\exA7\exA8\exA9\exC0\ex4F\exD0\exA1\ex07\*(Aq . \& \*(Aq\ex20\ex21\ex22\ex23\ex24\ex15\ex06\ex17\ex28\ex29\ex2A\ex2B\ex2C\ex09\ex0A\ex1B\*(Aq . \& \*(Aq\ex30\ex31\ex1A\ex33\ex34\ex35\ex36\ex08\ex38\ex39\ex3A\ex3B\ex04\ex14\ex3E\exFF\*(Aq . \& \*(Aq\ex41\exAA\ex4A\exB1\ex9F\exB2\ex6A\exB5\exBD\exB4\ex9A\ex8A\ex5F\exCA\exAF\exBC\*(Aq . \& \*(Aq\ex90\ex8F\exEA\exFA\exBE\exA0\exB6\exB3\ex9D\exDA\ex9B\ex8B\exB7\exB8\exB9\exAB\*(Aq . \& \*(Aq\ex64\ex65\ex62\ex66\ex63\ex67\ex9E\ex68\ex74\ex71\ex72\ex73\ex78\ex75\ex76\ex77\*(Aq . \& \*(Aq\exAC\ex69\exED\exEE\exEB\exEF\exEC\exBF\ex80\exFD\exFE\exFB\exFC\exAD\exAE\ex59\*(Aq . \& \*(Aq\ex44\ex45\ex42\ex46\ex43\ex47\ex9C\ex48\ex54\ex51\ex52\ex53\ex58\ex55\ex56\ex57\*(Aq . \& \*(Aq\ex8C\ex49\exCD\exCE\exCB\exCF\exCC\exE1\ex70\exDD\exDE\exDB\exDC\ex8D\ex8E\exDF\*(Aq; \& \& my $ebcdic_string = $ascii_string; \& eval \*(Aq$ebcdic_string =~ tr/\e000\-\e377/\*(Aq . $cp_037 . \*(Aq/\*(Aq; .Ve .PP To convert from \s-1EBCDIC 037\s0 to \s-1ASCII\s0 just reverse the order of the tr/// arguments like so: .PP .Vb 2 \& my $ascii_string = $ebcdic_string; \& eval \*(Aq$ascii_string =~ tr/\*(Aq . $cp_037 . \*(Aq/\e000\-\e377/\*(Aq; .Ve .PP Similarly one could take the output of the third numbers column from recipe 2 to obtain a \f(CW$cp_1047\fR table. The fourth numbers column of the output from recipe 2 could provide a \f(CW$cp_posix_bc\fR table suitable for transcoding as well. .PP If you wanted to see the inverse tables, you would first have to sort on the desired numbers column as in recipes 4, 5 or 6, then take the output of the first numbers column. .SS "iconv" .IX Subsection "iconv" \&\s-1XPG\s0 operability often implies the presence of an \fIiconv\fR utility available from the shell or from the C library. Consult your system's documentation for information on iconv. .PP On \s-1OS/390\s0 or z/OS see the \fBiconv\fR\|(1) manpage. One way to invoke the \f(CW\*(C`iconv\*(C'\fR shell utility from within perl would be to: .PP .Vb 2 \& # OS/390 or z/OS example \& $ascii_data = \`echo \*(Aq$ebcdic_data\*(Aq| iconv \-f IBM\-1047 \-t ISO8859\-1\` .Ve .PP or the inverse map: .PP .Vb 2 \& # OS/390 or z/OS example \& $ebcdic_data = \`echo \*(Aq$ascii_data\*(Aq| iconv \-f ISO8859\-1 \-t IBM\-1047\` .Ve .PP For other Perl-based conversion options see the \f(CW\*(C`Convert::*\*(C'\fR modules on \s-1CPAN.\s0 .SS "C \s-1RTL\s0" .IX Subsection "C RTL" The \s-1OS/390\s0 and z/OS C run-time libraries provide \f(CW\*(C`_atoe()\*(C'\fR and \f(CW\*(C`_etoa()\*(C'\fR functions. .SH "OPERATOR DIFFERENCES" .IX Header "OPERATOR DIFFERENCES" The \f(CW\*(C`..\*(C'\fR range operator treats certain character ranges with care on \s-1EBCDIC\s0 platforms. For example the following array will have twenty six elements on either an \s-1EBCDIC\s0 platform or an \s-1ASCII\s0 platform: .PP .Vb 1 \& @alphabet = (\*(AqA\*(Aq..\*(AqZ\*(Aq); # $#alphabet == 25 .Ve .PP The bitwise operators such as & ^ | may return different results when operating on string or character data in a Perl program running on an \s-1EBCDIC\s0 platform than when run on an \s-1ASCII\s0 platform. Here is an example adapted from the one in perlop: .PP .Vb 5 \& # EBCDIC\-based examples \& print "j p \en" ^ " a h"; # prints "JAPH\en" \& print "JA" | " ph\en"; # prints "japh\en" \& print "JAPH\enJunk" & "\e277\e277\e277\e277\e277"; # prints "japh\en"; \& print \*(Aqp N$\*(Aq ^ " E \&\f(CW\*(C`(chr(1)\*(C'\fR eq \f(CW\*(C`\ecA\*(C'\fR)>, and so on. Perl on \s-1EBCDIC\s0 platforms has been ported to take \f(CW\*(C`\ec@\*(C'\fR to \f(CWchr(0)\fR and \f(CW\*(C`\ecA\*(C'\fR to \f(CWchr(1)\fR, etc. as well, but the characters that result depend on which code page you are using. The table below uses the standard acronyms for the controls. The POSIX-BC and 1047 sets are identical throughout this range and differ from the 0037 set at only one spot (21 decimal). Note that the line terminator character may be generated by \f(CW\*(C`\ecJ\*(C'\fR on \s-1ASCII\s0 platforms but by \f(CW\*(C`\ecU\*(C'\fR on 1047 or POSIX-BC platforms and cannot be generated as a \f(CW"\ec.letter."\fR control character on 0037 platforms. Note also that \f(CW\*(C`\ec\e\*(C'\fR cannot be the final element in a string or regex, as it will absorb the terminator. But \f(CW\*(C`\ec\e\f(CIX\f(CW\*(C'\fR is a \f(CW\*(C`FILE SEPARATOR\*(C'\fR concatenated with \fIX\fR for all \fIX\fR. The outlier \f(CW\*(C`\ec?\*(C'\fR on \s-1ASCII,\s0 which yields a non\-C0 control \f(CW\*(C`DEL\*(C'\fR, yields the outlier control \f(CW\*(C`APC\*(C'\fR on \s-1EBCDIC,\s0 the one that isn't in the block of contiguous controls. Note that a subtlety of this is that \&\f(CW\*(C`\ec?\*(C'\fR on \s-1ASCII\s0 platforms is an \s-1ASCII\s0 character, while it isn't equivalent to any \s-1ASCII\s0 character in \s-1EBCDIC\s0 platforms. .PP .Vb 10 \& chr ord 8859\-1 0037 1047 && POSIX\-BC \& \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\- \& \ec@ 0 \& \ecA 1 \& \ecB 2 \& \ecC 3 \& \ecD 4 \& \ecE 5 \& \ecF 6 \& \ecG 7 \& \ecH 8 \& \ecI 9 \& \ecJ 10 \& \ecK 11 \& \ecL 12 \& \ecM 13 \& \ecN 14 \& \ecO 15 \& \ecP 16 \& \ecQ 17 \& \ecR 18 \& \ecS 19 \& \ecT 20 \& \ecU 21 ** \& \ecV 22 \& \ecW 23 \& \ecX 24 \& \ecY 25 \& \ecZ 26 \& \ec[ 27 \& \ec\eX 28 X X X \& \ec] 29 \& \ec^ 30 \& \ec_ 31 \& \ec? * .Ve .PP \&\f(CW\*(C`*\*(C'\fR Note: \f(CW\*(C`\ec?\*(C'\fR maps to ordinal 127 (\f(CW\*(C`DEL\*(C'\fR) on \s-1ASCII\s0 platforms, but since ordinal 127 is a not a control character on \s-1EBCDIC\s0 machines, \&\f(CW\*(C`\ec?\*(C'\fR instead maps on them to \f(CW\*(C`APC\*(C'\fR, which is 255 in 0037 and 1047, and 95 in POSIX-BC. .SH "FUNCTION DIFFERENCES" .IX Header "FUNCTION DIFFERENCES" .ie n .IP """chr()""" 8 .el .IP "\f(CWchr()\fR" 8 .IX Item "chr()" \&\f(CW\*(C`chr()\*(C'\fR must be given an \s-1EBCDIC\s0 code number argument to yield a desired character return value on an \s-1EBCDIC\s0 platform. For example: .Sp .Vb 1 \& $CAPITAL_LETTER_A = chr(193); .Ve .ie n .IP """ord()""" 8 .el .IP "\f(CWord()\fR" 8 .IX Item "ord()" \&\f(CW\*(C`ord()\*(C'\fR will return \s-1EBCDIC\s0 code number values on an \s-1EBCDIC\s0 platform. For example: .Sp .Vb 1 \& $the_number_193 = ord("A"); .Ve .ie n .IP """pack()""" 8 .el .IP "\f(CWpack()\fR" 8 .IX Item "pack()" The \f(CW"c"\fR and \f(CW"C"\fR templates for \f(CW\*(C`pack()\*(C'\fR are dependent upon character set encoding. Examples of usage on \s-1EBCDIC\s0 include: .Sp .Vb 4 \& $foo = pack("CCCC",193,194,195,196); \& # $foo eq "ABCD" \& $foo = pack("C4",193,194,195,196); \& # same thing \& \& $foo = pack("ccxxcc",193,194,195,196); \& # $foo eq "AB\e0\e0CD" .Ve .Sp The \f(CW"U"\fR template has been ported to mean \*(L"Unicode\*(R" on all platforms so that .Sp .Vb 1 \& pack("U", 65) eq \*(AqA\*(Aq .Ve .Sp is true on all platforms. If you want native code points for the low 256, use the \f(CW"W"\fR template. This means that the equivalences .Sp .Vb 2 \& pack("W", ord($character)) eq $character \& unpack("W", $character) == ord $character .Ve .Sp will hold. .ie n .IP """print()""" 8 .el .IP "\f(CWprint()\fR" 8 .IX Item "print()" One must be careful with scalars and strings that are passed to print that contain \s-1ASCII\s0 encodings. One common place for this to occur is in the output of the \s-1MIME\s0 type header for \&\s-1CGI\s0 script writing. For example, many Perl programming guides recommend something similar to: .Sp .Vb 2 \& print "Content\-type:\ettext/html\e015\e012\e015\e012"; \& # this may be wrong on EBCDIC .Ve .Sp You can instead write .Sp .Vb 1 \& print "Content\-type:\ettext/html\er\en\er\en"; # OK for DGW et al .Ve .Sp and have it work portably. .Sp That is because the translation from \s-1EBCDIC\s0 to \s-1ASCII\s0 is done by the web server in this case. Consult your web server's documentation for further details. .ie n .IP """printf()""" 8 .el .IP "\f(CWprintf()\fR" 8 .IX Item "printf()" The formats that can convert characters to numbers and vice versa will be different from their \s-1ASCII\s0 counterparts when executed on an \s-1EBCDIC\s0 platform. Examples include: .Sp .Vb 1 \& printf("%c%c%c",193,194,195); # prints ABC .Ve .ie n .IP """sort()""" 8 .el .IP "\f(CWsort()\fR" 8 .IX Item "sort()" \&\s-1EBCDIC\s0 sort results may differ from \s-1ASCII\s0 sort results especially for mixed case strings. This is discussed in more detail below. .ie n .IP """sprintf()""" 8 .el .IP "\f(CWsprintf()\fR" 8 .IX Item "sprintf()" See the discussion of \f(CW"printf()"\fR above. An example of the use of sprintf would be: .Sp .Vb 1 \& $CAPITAL_LETTER_A = sprintf("%c",193); .Ve .ie n .IP """unpack()""" 8 .el .IP "\f(CWunpack()\fR" 8 .IX Item "unpack()" See the discussion of \f(CW"pack()"\fR above. .PP Note that it is possible to write portable code for these by specifying things in Unicode numbers, and using a conversion function: .PP .Vb 3 \& printf("%c",utf8::unicode_to_native(65)); # prints A on all \& # platforms \& print utf8::native_to_unicode(ord("A")); # Likewise, prints 65 .Ve .PP See \*(L"Unicode and \s-1EBCDIC\*(R"\s0 in perluniintro and \*(L"\s-1CONVERSIONS\*(R"\s0 for other options. .SH "REGULAR EXPRESSION DIFFERENCES" .IX Header "REGULAR EXPRESSION DIFFERENCES" You can write your regular expressions just like someone on an \s-1ASCII\s0 platform would do. But keep in mind that using octal or hex notation to specify a particular code point will give you the character that the \&\s-1EBCDIC\s0 code page natively maps to it. (This is also true of all double-quoted strings.) If you want to write portably, just use the \&\f(CW\*(C`\eN{U+...}\*(C'\fR notation everywhere where you would have used \f(CW\*(C`\ex{...}\*(C'\fR, and don't use octal notation at all. .PP Starting in Perl v5.22, this applies to ranges in bracketed character classes. If you say, for example, \f(CW\*(C`qr/[\eN{U+20}\-\eN{U+7F}]/\*(C'\fR, it means the characters \f(CW\*(C`\eN{U+20}\*(C'\fR, \f(CW\*(C`\eN{U+21}\*(C'\fR, ..., \f(CW\*(C`\eN{U+7F}\*(C'\fR. This range is all the printable characters that the \s-1ASCII\s0 character set contains. .PP Prior to v5.22, you couldn't specify any ranges portably, except (starting in Perl v5.5.3) all subsets of the \f(CW\*(C`[A\-Z]\*(C'\fR and \f(CW\*(C`[a\-z]\*(C'\fR ranges are specially coded to not pick up gap characters. For example, characters such as \*(L"ô\*(R" (\f(CW\*(C`o WITH CIRCUMFLEX\*(C'\fR) that lie between \&\*(L"I\*(R" and \*(L"J\*(R" would not be matched by the regular expression range \&\f(CW\*(C`/[H\-K]/\*(C'\fR. But if either of the range end points is explicitly numeric (and neither is specified by \f(CW\*(C`\eN{U+...}\*(C'\fR), the gap characters are matched: .PP .Vb 1 \& /[\ex89\-\ex91]/ .Ve .PP will match \f(CW\*(C`\ex8e\*(C'\fR, even though \f(CW\*(C`\ex89\*(C'\fR is \*(L"i\*(R" and \f(CW\*(C`\ex91 \*(C'\fR is \*(L"j\*(R", and \f(CW\*(C`\ex8e\*(C'\fR is a gap character, from the alphabetic viewpoint. .PP Another construct to be wary of is the inappropriate use of hex (unless you use \f(CW\*(C`\eN{U+...}\*(C'\fR) or octal constants in regular expressions. Consider the following set of subs: .PP .Vb 4 \& sub is_c0 { \& my $char = substr(shift,0,1); \& $char =~ /[\e000\-\e037]/; \& } \& \& sub is_print_ascii { \& my $char = substr(shift,0,1); \& $char =~ /[\e040\-\e176]/; \& } \& \& sub is_delete { \& my $char = substr(shift,0,1); \& $char eq "\e177"; \& } \& \& sub is_c1 { \& my $char = substr(shift,0,1); \& $char =~ /[\e200\-\e237]/; \& } \& \& sub is_latin_1 { # But not ASCII; not C1 \& my $char = substr(shift,0,1); \& $char =~ /[\e240\-\e377]/; \& } .Ve .PP These are valid only on \s-1ASCII\s0 platforms. Starting in Perl v5.22, simply changing the octal constants to equivalent \f(CW\*(C`\eN{U+...}\*(C'\fR values makes them portable: .PP .Vb 4 \& sub is_c0 { \& my $char = substr(shift,0,1); \& $char =~ /[\eN{U+00}\-\eN{U+1F}]/; \& } \& \& sub is_print_ascii { \& my $char = substr(shift,0,1); \& $char =~ /[\eN{U+20}\-\eN{U+7E}]/; \& } \& \& sub is_delete { \& my $char = substr(shift,0,1); \& $char eq "\eN{U+7F}"; \& } \& \& sub is_c1 { \& my $char = substr(shift,0,1); \& $char =~ /[\eN{U+80}\-\eN{U+9F}]/; \& } \& \& sub is_latin_1 { # But not ASCII; not C1 \& my $char = substr(shift,0,1); \& $char =~ /[\eN{U+A0}\-\eN{U+FF}]/; \& } .Ve .PP And here are some alternative portable ways to write them: .PP .Vb 3 \& sub Is_c0 { \& my $char = substr(shift,0,1); \& return $char =~ /[[:cntrl:]]/a && ! Is_delete($char); \& \& # Alternatively: \& # return $char =~ /[[:cntrl:]]/ \& # && $char =~ /[[:ascii:]]/ \& # && ! Is_delete($char); \& } \& \& sub Is_print_ascii { \& my $char = substr(shift,0,1); \& \& return $char =~ /[[:print:]]/a; \& \& # Alternatively: \& # return $char =~ /[[:print:]]/ && $char =~ /[[:ascii:]]/; \& \& # Or \& # return $char \& # =~ /[ !"\e#\e$%&\*(Aq()*+,\e\-.\e/0\-9:;<=>?\e@A\-Z[\e\e\e]^_\`a\-z{|}~]/; \& } \& \& sub Is_delete { \& my $char = substr(shift,0,1); \& return utf8::native_to_unicode(ord $char) == 0x7F; \& } \& \& sub Is_c1 { \& use feature \*(Aqunicode_strings\*(Aq; \& my $char = substr(shift,0,1); \& return $char =~ /[[:cntrl:]]/ && $char !~ /[[:ascii:]]/; \& } \& \& sub Is_latin_1 { # But not ASCII; not C1 \& use feature \*(Aqunicode_strings\*(Aq; \& my $char = substr(shift,0,1); \& return ord($char) < 256 \& && $char !~ /[[:ascii:]]/ \& && $char !~ /[[:cntrl:]]/; \& } .Ve .PP Another way to write \f(CW\*(C`Is_latin_1()\*(C'\fR would be to use the characters in the range explicitly: .PP .Vb 5 \& sub Is_latin_1 { \& my $char = substr(shift,0,1); \& $char =~ /[ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏ] \& [ÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ]/x; \& } .Ve .PP Although that form may run into trouble in network transit (due to the presence of 8 bit characters) or on non ISO-Latin character sets. But it does allow \f(CW\*(C`Is_c1\*(C'\fR to be rewritten so it works on Perls that don't have \f(CW\*(Aqunicode_strings\*(Aq\fR (earlier than v5.14): .PP .Vb 6 \& sub Is_latin_1 { # But not ASCII; not C1 \& my $char = substr(shift,0,1); \& return ord($char) < 256 \& && $char !~ /[[:ascii:]]/ \& && ! Is_latin1($char); \& } .Ve .SH "SOCKETS" .IX Header "SOCKETS" Most socket programming assumes \s-1ASCII\s0 character encodings in network byte order. Exceptions can include \s-1CGI\s0 script writing under a host web server where the server may take care of translation for you. Most host web servers convert \s-1EBCDIC\s0 data to \s-1ISO\-8859\-1\s0 or Unicode on output. .SH "SORTING" .IX Header "SORTING" One big difference between ASCII-based character sets and \s-1EBCDIC\s0 ones are the relative positions of the characters when sorted in native order. Of most concern are the upper\- and lowercase letters, the digits, and the underscore (\f(CW"_"\fR). On \s-1ASCII\s0 platforms the native sort order has the digits come before the uppercase letters which come before the underscore which comes before the lowercase letters. On \s-1EBCDIC,\s0 the underscore comes first, then the lowercase letters, then the uppercase ones, and the digits last. If sorted on an ASCII-based platform, the two-letter abbreviation for a physician comes before the two letter abbreviation for drive; that is: .PP .Vb 2 \& @sorted = sort(qw(Dr. dr.)); # @sorted holds (\*(AqDr.\*(Aq,\*(Aqdr.\*(Aq) on ASCII, \& # but (\*(Aqdr.\*(Aq,\*(AqDr.\*(Aq) on EBCDIC .Ve .PP The property of lowercase before uppercase letters in \s-1EBCDIC\s0 is even carried to the Latin 1 \s-1EBCDIC\s0 pages such as 0037 and 1047. An example would be that \*(L"Ë\*(R" (\f(CW\*(C`E WITH DIAERESIS\*(C'\fR, 203) comes before \*(L"ë\*(R" (\f(CW\*(C`e WITH DIAERESIS\*(C'\fR, 235) on an \s-1ASCII\s0 platform, but the latter (83) comes before the former (115) on an \s-1EBCDIC\s0 platform. (Astute readers will note that the uppercase version of \*(L"ß\*(R" \&\f(CW\*(C`SMALL LETTER SHARP S\*(C'\fR is simply \*(L"\s-1SS\*(R"\s0 and that the upper case versions of \*(L"ÿ\*(R" (small \f(CW\*(C`y WITH DIAERESIS\*(C'\fR) and \*(L"µ\*(R" (\f(CW\*(C`MICRO SIGN\*(C'\fR) are not in the 0..255 range but are in Unicode, in a Unicode enabled Perl). .PP The sort order will cause differences between results obtained on \&\s-1ASCII\s0 platforms versus \s-1EBCDIC\s0 platforms. What follows are some suggestions on how to deal with these differences. .SS "Ignore \s-1ASCII\s0 vs. \s-1EBCDIC\s0 sort differences." .IX Subsection "Ignore ASCII vs. EBCDIC sort differences." This is the least computationally expensive strategy. It may require some user education. .SS "Use a sort helper function" .IX Subsection "Use a sort helper function" This is completely general, but the most computationally expensive strategy. Choose one or the other character set and transform to that for every sort comparison. Here's a complete example that transforms to \s-1ASCII\s0 sort order: .PP .Vb 2 \& sub native_to_uni($) { \& my $string = shift; \& \& # Saves time on an ASCII platform \& return $string if ord \*(AqA\*(Aq == 65; \& \& my $output = ""; \& for my $i (0 .. length($string) \- 1) { \& $output \& .= chr(utf8::native_to_unicode(ord(substr($string, $i, 1)))); \& } \& \& # Preserve utf8ness of input onto the output, even if it didn\*(Aqt need \& # to be utf8 \& utf8::upgrade($output) if utf8::is_utf8($string); \& \& return $output; \& } \& \& sub ascii_order { # Sort helper \& return native_to_uni($a) cmp native_to_uni($b); \& } \& \& sort ascii_order @list; .Ve .SS "\s-1MONO CASE\s0 then sort data (for non-digits, non-underscore)" .IX Subsection "MONO CASE then sort data (for non-digits, non-underscore)" If you don't care about where digits and underscore sort to, you can do something like this .PP .Vb 3 \& sub case_insensitive_order { # Sort helper \& return lc($a) cmp lc($b) \& } \& \& sort case_insensitive_order @list; .Ve .PP If performance is an issue, and you don't care if the output is in the same case as the input, Use \f(CW\*(C`tr///\*(C'\fR to transform to the case most employed within the data. If the data are primarily \s-1UPPERCASE\s0 non\-Latin1, then apply \f(CW\*(C`tr/[a\-z]/[A\-Z]/\*(C'\fR, and then \f(CW\*(C`sort()\*(C'\fR. If the data are primarily lowercase non Latin1 then apply \f(CW\*(C`tr/[A\-Z]/[a\-z]/\*(C'\fR before sorting. If the data are primarily \s-1UPPERCASE\s0 and include Latin\-1 characters then apply: .PP .Vb 3 \& tr/[a\-z]/[A\-Z]/; \& tr/[àáâãäåæçèéêëìíîïðñòóôõöøùúûüýþ]/[ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞ/; \& s/ß/SS/g; .Ve .PP then \f(CW\*(C`sort()\*(C'\fR. If you have a choice, it's better to lowercase things to avoid the problems of the two Latin\-1 characters whose uppercase is outside Latin\-1: \*(L"ÿ\*(R" (small \f(CW\*(C`y WITH DIAERESIS\*(C'\fR) and \*(L"µ\*(R" (\f(CW\*(C`MICRO SIGN\*(C'\fR). If you do need to upppercase, you can; with a Unicode-enabled Perl, do: .PP .Vb 2 \& tr/ÿ/\ex{178}/; \& tr/µ/\ex{39C}/; .Ve .SS "Perform sorting on one type of platform only." .IX Subsection "Perform sorting on one type of platform only." This strategy can employ a network connection. As such it would be computationally expensive. .SH "TRANSFORMATION FORMATS" .IX Header "TRANSFORMATION FORMATS" There are a variety of ways of transforming data with an intra character set mapping that serve a variety of purposes. Sorting was discussed in the previous section and a few of the other more popular mapping techniques are discussed next. .SS "\s-1URL\s0 decoding and encoding" .IX Subsection "URL decoding and encoding" Note that some URLs have hexadecimal \s-1ASCII\s0 code points in them in an attempt to overcome character or protocol limitation issues. For example the tilde character is not on every keyboard hence a \s-1URL\s0 of the form: .PP .Vb 1 \& http://www.pvhp.com/~pvhp/ .Ve .PP may also be expressed as either of: .PP .Vb 1 \& http://www.pvhp.com/%7Epvhp/ \& \& http://www.pvhp.com/%7epvhp/ .Ve .PP where 7E is the hexadecimal \s-1ASCII\s0 code point for \*(L"~\*(R". Here is an example of decoding such a \s-1URL\s0 in any \s-1EBCDIC\s0 code page: .PP .Vb 3 \& $url = \*(Aqhttp://www.pvhp.com/%7Epvhp/\*(Aq; \& $url =~ s/%([0\-9a\-fA\-F]{2})/ \& pack("c",utf8::unicode_to_native(hex($1)))/xge; .Ve .PP Conversely, here is a partial solution for the task of encoding such a \s-1URL\s0 in any \s-1EBCDIC\s0 code page: .PP .Vb 5 \& $url = \*(Aqhttp://www.pvhp.com/~pvhp/\*(Aq; \& # The following regular expression does not address the \& # mappings for: (\*(Aq.\*(Aq => \*(Aq%2E\*(Aq, \*(Aq/\*(Aq => \*(Aq%2F\*(Aq, \*(Aq:\*(Aq => \*(Aq%3A\*(Aq) \& $url =~ s/([\et "#%&\e(\e),;<=>\e?\e@\e[\e\e\e]^\`{|}~])/ \& sprintf("%%%02X",utf8::native_to_unicode(ord($1)))/xge; .Ve .PP where a more complete solution would split the \s-1URL\s0 into components and apply a full s/// substitution only to the appropriate parts. .SS "uu encoding and decoding" .IX Subsection "uu encoding and decoding" The \f(CW\*(C`u\*(C'\fR template to \f(CW\*(C`pack()\*(C'\fR or \f(CW\*(C`unpack()\*(C'\fR will render \s-1EBCDIC\s0 data in \&\s-1EBCDIC\s0 characters equivalent to their \s-1ASCII\s0 counterparts. For example, the following will print \*(L"Yes indeed\en\*(R" on either an \s-1ASCII\s0 or \s-1EBCDIC\s0 computer: .PP .Vb 10 \& $all_byte_chrs = \*(Aq\*(Aq; \& for (0..255) { $all_byte_chrs .= chr($_); } \& $uuencode_byte_chrs = pack(\*(Aqu\*(Aq, $all_byte_chrs); \& ($uu = <<\*(AqENDOFHEREDOC\*(Aq) =~ s/^\es*//gm; \& M\`\`$"\`P0%!@<("0H+#\`T.#Q\`1$A,4%187&!D:&QP=\*(AqA\e@(2(C)"4F)R@I*BLL \& M+2XO,#$R,S0U\-C\*(AqEZ>WQ]?G^\`@8*#A(6& \& MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S \& MM+6VM[BYNKN\eO;Z_P,\*(Aq"P\e3%QL?(R+CY.7FY^CIZNOL[>[O\e/\*(AqR\e_3U]O?X^?K[_/W^_P\`\` \& ENDOFHEREDOC \& if ($uuencode_byte_chrs eq $uu) { \& print "Yes "; \& } \& $uudecode_byte_chrs = unpack(\*(Aqu\*(Aq, $uuencode_byte_chrs); \& if ($uudecode_byte_chrs eq $all_byte_chrs) { \& print "indeed\en"; \& } .Ve .PP Here is a very spartan uudecoder that will work on \s-1EBCDIC:\s0 .PP .Vb 10 \& #!/usr/local/bin/perl \& $_ = <> until ($mode,$file) = /^begin\es*(\ed*)\es*(\eS*)/; \& open(OUT, "> $file") if $file ne ""; \& while(<>) { \& last if /^end/; \& next if /[a\-z]/; \& next unless int((((utf8::native_to_unicode(ord()) \- 32 ) & 077) \& + 2) / 3) \& == int(length() / 4); \& print OUT unpack("u", $_); \& } \& close(OUT); \& chmod oct($mode), $file; .Ve .SS "Quoted-Printable encoding and decoding" .IX Subsection "Quoted-Printable encoding and decoding" On ASCII-encoded platforms it is possible to strip characters outside of the printable set using: .PP .Vb 3 \& # This QP encoder works on ASCII only \& $qp_string =~ s/([=\ex00\-\ex1F\ex80\-\exFF])/ \& sprintf("=%02X",ord($1))/xge; .Ve .PP Starting in Perl v5.22, this is trivially changeable to work portably on both \s-1ASCII\s0 and \s-1EBCDIC\s0 platforms. .PP .Vb 3 \& # This QP encoder works on both ASCII and EBCDIC \& $qp_string =~ s/([=\eN{U+00}\-\eN{U+1F}\eN{U+80}\-\eN{U+FF}])/ \& sprintf("=%02X",ord($1))/xge; .Ve .PP For earlier Perls, a \s-1QP\s0 encoder that works on both \s-1ASCII\s0 and \s-1EBCDIC\s0 platforms would look somewhat like the following: .PP .Vb 4 \& $delete = utf8::unicode_to_native(ord("\ex7F")); \& $qp_string =~ \& s/([^[:print:]$delete])/ \& sprintf("=%02X",utf8::native_to_unicode(ord($1)))/xage; .Ve .PP (although in production code the substitutions might be done in the \s-1EBCDIC\s0 branch with the function call and separately in the \&\s-1ASCII\s0 branch without the expense of the identity map; in Perl v5.22, the identity map is optimized out so there is no expense, but the alternative above is simpler and is also available in v5.22). .PP Such \s-1QP\s0 strings can be decoded with: .PP .Vb 3 \& # This QP decoder is limited to ASCII only \& $string =~ s/=([[:xdigit:][[:xdigit:])/chr hex $1/ge; \& $string =~ s/=[\en\er]+$//; .Ve .PP Whereas a \s-1QP\s0 decoder that works on both \s-1ASCII\s0 and \s-1EBCDIC\s0 platforms would look somewhat like the following: .PP .Vb 3 \& $string =~ s/=([[:xdigit:][:xdigit:]])/ \& chr utf8::native_to_unicode(hex $1)/xge; \& $string =~ s/=[\en\er]+$//; .Ve .SS "Caesarean ciphers" .IX Subsection "Caesarean ciphers" The practice of shifting an alphabet one or more characters for encipherment dates back thousands of years and was explicitly detailed by Gaius Julius Caesar in his \fBGallic Wars\fR text. A single alphabet shift is sometimes referred to as a rotation and the shift amount is given as a number \f(CW$n\fR after the string 'rot' or \*(L"rot$n\*(R". Rot0 and rot26 would designate identity maps on the 26\-letter English version of the Latin alphabet. Rot13 has the interesting property that alternate subsequent invocations are identity maps (thus rot13 is its own non-trivial inverse in the group of 26 alphabet rotations). Hence the following is a rot13 encoder and decoder that will work on \s-1ASCII\s0 and \s-1EBCDIC\s0 platforms: .PP .Vb 1 \& #!/usr/local/bin/perl \& \& while(<>){ \& tr/n\-za\-mN\-ZA\-M/a\-zA\-Z/; \& print; \& } .Ve .PP In one-liner form: .PP .Vb 1 \& perl \-ne \*(Aqtr/n\-za\-mN\-ZA\-M/a\-zA\-Z/;print\*(Aq .Ve .SH "Hashing order and checksums" .IX Header "Hashing order and checksums" Perl deliberately randomizes hash order for security purposes on both \&\s-1ASCII\s0 and \s-1EBCDIC\s0 platforms. .PP \&\s-1EBCDIC\s0 checksums will differ for the same file translated into \s-1ASCII\s0 and vice versa. .SH "I18N AND L10N" .IX Header "I18N AND L10N" Internationalization (I18N) and localization (L10N) are supported at least in principle even on \s-1EBCDIC\s0 platforms. The details are system-dependent and discussed under the \*(L"\s-1OS ISSUES\*(R"\s0 section below. .SH "MULTI-OCTET CHARACTER SETS" .IX Header "MULTI-OCTET CHARACTER SETS" Perl works with UTF-EBCDIC, a multi-byte encoding. In Perls earlier than v5.22, there may be various bugs in this regard. .PP Legacy multi byte \s-1EBCDIC\s0 code pages \s-1XXX.\s0 .SH "OS ISSUES" .IX Header "OS ISSUES" There may be a few system-dependent issues of concern to \s-1EBCDIC\s0 Perl programmers. .SS "\s-1OS/400\s0" .IX Subsection "OS/400" .IP "\s-1PASE\s0" 8 .IX Item "PASE" The \s-1PASE\s0 environment is a runtime environment for \s-1OS/400\s0 that can run executables built for PowerPC \s-1AIX\s0 in \s-1OS/400\s0; see perlos400. \s-1PASE\s0 is ASCII-based, not EBCDIC-based as the \s-1ILE.\s0 .IP "\s-1IFS\s0 access" 8 .IX Item "IFS access" \&\s-1XXX.\s0 .SS "\s-1OS/390,\s0 z/OS" .IX Subsection "OS/390, z/OS" Perl runs under Unix Systems Services or \s-1USS.\s0 .ie n .IP """sigaction""" 8 .el .IP "\f(CWsigaction\fR" 8 .IX Item "sigaction" \&\f(CW\*(C`SA_SIGINFO\*(C'\fR can have segmentation faults. .ie n .IP """chcp""" 8 .el .IP "\f(CWchcp\fR" 8 .IX Item "chcp" \&\fBchcp\fR is supported as a shell utility for displaying and changing one's code page. See also \fBchcp\fR\|(1). .IP "dataset access" 8 .IX Item "dataset access" For sequential data set access try: .Sp .Vb 1 \& my @ds_records = \`cat //DSNAME\`; .Ve .Sp or: .Sp .Vb 1 \& my @ds_records = \`cat //\*(AqHLQ.DSNAME\*(Aq\`; .Ve .Sp See also the OS390::Stdio module on \s-1CPAN.\s0 .ie n .IP """iconv""" 8 .el .IP "\f(CWiconv\fR" 8 .IX Item "iconv" \&\fBiconv\fR is supported as both a shell utility and a C \s-1RTL\s0 routine. See also the \fBiconv\fR\|(1) and \fBiconv\fR\|(3) manual pages. .IP "locales" 8 .IX Item "locales" Locales are supported. There may be glitches when a locale is another \&\s-1EBCDIC\s0 code page which has some of the code-page variant characters in other positions. .Sp There aren't currently any real \s-1UTF\-8\s0 locales, even though some locale names contain the string \*(L"\s-1UTF\-8\*(R".\s0 .Sp See perllocale for information on locales. The L10N files are in \fI/usr/nls/locale\fR. \f(CW$Config{d_setlocale}\fR is \f(CW\*(Aqdefine\*(Aq\fR on \&\s-1OS/390\s0 or z/OS. .SS "POSIX-BC?" .IX Subsection "POSIX-BC?" \&\s-1XXX.\s0 .SH "BUGS" .IX Header "BUGS" .IP "\(bu" 4 Not all shells will allow multiple \f(CW\*(C`\-e\*(C'\fR string arguments to perl to be concatenated together properly as recipes in this document 0, 2, 4, 5, and 6 might seem to imply. .IP "\(bu" 4 There are a significant number of test failures in the \s-1CPAN\s0 modules shipped with Perl v5.22 and 5.24. These are only in modules not primarily maintained by Perl 5 porters. Some of these are failures in the tests only: they don't realize that it is proper to get different results on \&\s-1EBCDIC\s0 platforms. And some of the failures are real bugs. If you compile and do a \f(CW\*(C`make test\*(C'\fR on Perl, all tests on the \f(CW\*(C`/cpan\*(C'\fR directory are skipped. .Sp Encode partially works. .IP "\(bu" 4 In earlier Perl versions, when byte and character data were concatenated, the new string was sometimes created by decoding the byte strings as \fI\s-1ISO 8859\-1\s0 (Latin\-1)\fR, even if the old Unicode string used \s-1EBCDIC.\s0 .SH "SEE ALSO" .IX Header "SEE ALSO" perllocale, perlfunc, perlunicode, utf8. .SH "REFERENCES" .IX Header "REFERENCES" .PP .PP .PP \&\fB\s-1ASCII:\s0 American Standard Code for Information Infiltration\fR Tom Jennings, September 1999. .PP \&\fBThe Unicode Standard, Version 3.0\fR The Unicode Consortium, Lisa Moore ed., \&\s-1ISBN 0\-201\-61633\-5,\s0 Addison Wesley Developers Press, February 2000. .PP \&\fB\s-1CDRA: IBM\s0 \- Character Data Representation Architecture \- Reference and Registry\fR, \s-1IBM SC09\-2190\-00,\s0 December 1996. .PP \&\*(L"Demystifying Character Sets\*(R", Andrea Vine, Multilingual Computing & Technology, \fB#26 Vol. 10 Issue 4\fR, August/September 1999; \&\s-1ISSN 1523\-0309\s0; Multilingual Computing Inc. Sandpoint \s-1ID, USA.\s0 .PP \&\fBCodes, Ciphers, and Other Cryptic and Clandestine Communication\fR Fred B. Wrixon, \s-1ISBN 1\-57912\-040\-7,\s0 Black Dog & Leventhal Publishers, 1998. .PP \&\fB\s-1IBM\s0 \- \s-1EBCDIC\s0 and the P\-bit; The biggest Computer Goof Ever\fR Robert Bemer. .SH "HISTORY" .IX Header "HISTORY" 15 April 2001: added \s-1UTF\-8\s0 and UTF-EBCDIC to main table, pvhp. .SH "AUTHOR" .IX Header "AUTHOR" Peter Prymmer pvhp@best.com wrote this in 1999 and 2000 with \s-1CCSID 0819\s0 and 0037 help from Chris Leach and André Pirard A.Pirard@ulg.ac.be as well as POSIX-BC help from Thomas Dorner Thomas.Dorner@start.de. Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and Joe Smith. Trademarks, registered trademarks, service marks and registered service marks used in this document are the property of their respective owners. .PP Now maintained by Perl5 Porters.