.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.40) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "BIO_PUSH 3SSL" .TH BIO_PUSH 3SSL "2023-02-05" "1.1.1n" "OpenSSL" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" BIO_push, BIO_pop, BIO_set_next \- add and remove BIOs from a chain .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& #include \& \& BIO *BIO_push(BIO *b, BIO *next); \& BIO *BIO_pop(BIO *b); \& void BIO_set_next(BIO *b, BIO *next); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" \&\fBBIO_push()\fR pushes \fIb\fR on \fInext\fR. If \fIb\fR is \s-1NULL\s0 the function does nothing and returns \fInext\fR. Otherwise it prepends \fIb\fR, which may be a single \s-1BIO\s0 or a chain of BIOs, to \fInext\fR (unless \fInext\fR is \s-1NULL\s0). It then makes a control call on \fIb\fR and returns \fIb\fR. .PP \&\fBBIO_pop()\fR removes the \s-1BIO\s0 \fIb\fR from any chain is is part of. If \fIb\fR is \s-1NULL\s0 the function does nothing and returns \s-1NULL.\s0 Otherwise it makes a control call on \fIb\fR and returns the next \s-1BIO\s0 in the chain, or \s-1NULL\s0 if there is no next \s-1BIO.\s0 The removed \s-1BIO\s0 becomes a single \s-1BIO\s0 with no association with the original chain, it can thus be freed or be made part of a different chain. .PP \&\fBBIO_set_next()\fR replaces the existing next \s-1BIO\s0 in a chain with the \s-1BIO\s0 pointed to by \fInext\fR. The new chain may include some of the same BIOs from the old chain or it may be completely different. .SH "NOTES" .IX Header "NOTES" The names of these functions are perhaps a little misleading. \fBBIO_push()\fR joins two \s-1BIO\s0 chains whereas \fBBIO_pop()\fR deletes a single \s-1BIO\s0 from a chain, the deleted \s-1BIO\s0 does not need to be at the end of a chain. .PP The process of calling \fBBIO_push()\fR and \fBBIO_pop()\fR on a \s-1BIO\s0 may have additional consequences (a control call is made to the affected BIOs). Any effects will be noted in the descriptions of individual BIOs. .SH "RETURN VALUES" .IX Header "RETURN VALUES" \&\fBBIO_push()\fR returns the head of the chain, which usually is \fIb\fR, or \fInext\fR if \fIb\fR is \s-1NULL.\s0 .PP \&\fBBIO_pop()\fR returns the next \s-1BIO\s0 in the chain, or \s-1NULL\s0 if there is no next \s-1BIO.\s0 .SH "EXAMPLES" .IX Header "EXAMPLES" For these examples suppose \fImd1\fR and \fImd2\fR are digest BIOs, \&\fIb64\fR is a base64 \s-1BIO\s0 and \fIf\fR is a file \s-1BIO.\s0 .PP If the call: .PP .Vb 1 \& BIO_push(b64, f); .Ve .PP is made then the new chain will be \fIb64\-f\fR. After making the calls .PP .Vb 2 \& BIO_push(md2, b64); \& BIO_push(md1, md2); .Ve .PP the new chain is \fImd1\-md2\-b64\-f\fR. Data written to \fImd1\fR will be digested by \fImd1\fR and \fImd2\fR, base64 encoded, and finally written to \fIf\fR. .PP It should be noted that reading causes data to pass in the reverse direction, that is data is read from \fIf\fR, base64 decoded, and digested by \fImd2\fR and then \fImd1\fR. .PP The call: .PP .Vb 1 \& BIO_pop(md2); .Ve .PP will return \fIb64\fR and the new chain will be \fImd1\-b64\-f\fR. Data can be written to and read from \fImd1\fR as before, except that \fImd2\fR will no more be applied. .SH "SEE ALSO" .IX Header "SEE ALSO" bio .SH "HISTORY" .IX Header "HISTORY" The \fBBIO_set_next()\fR function was added in OpenSSL 1.1.0. .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright 2000\-2021 The OpenSSL Project Authors. All Rights Reserved. .PP Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at .