.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.40) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "Math::GSL::BLAS 3pm" .TH Math::GSL::BLAS 3pm "2020-11-09" "perl v5.32.0" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" Math::GSL::BLAS \- Basic Linear Algebra Subprograms .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 2 \& use Math::GSL::BLAS qw/:all/; \& use Math::GSL::Matrix qw/:all/; \& \& # matrix\-matrix product of double numbers \& my $A = Math::GSL::Matrix\->new(2,2); \& $A\->set_row(0, [1, 4]); \& \->set_row(1, [3, 2]); \& my $B = Math::GSL::Matrix\->new(2,2); \& $B\->set_row(0, [2, 1]); \& \->set_row(1, [5,3]); \& my $C = Math::GSL::Matrix\->new(2,2); \& gsl_matrix_set_zero($C\->raw); \& gsl_blas_dgemm($CblasNoTrans, $CblasNoTrans, 1, $A\->raw, $B\->raw, 1, $C\->raw); \& my @got = $C\->row(0)\->as_list; \& print "The resulting matrix is: \en["; \& print "$got[0] $got[1]\en"; \& @got = $C\->row(1)\->as_list; \& print "$got[0] $got[1] ]\en"; \& \& # compute the scalar product of two vectors : \& use Math::GSL::Vector qw/:all/; \& use Math::GSL::CBLAS qw/:all/; \& my $vec1 = Math::GSL::Vector\->new([1,2,3,4,5]); \& my $vec2 = Math::GSL::Vector\->new([5,4,3,2,1]); \& my ($status, $result) = gsl_blas_ddot($vec1\->raw, $vec2\->raw); \& if($status == 0) { \& print "The function has succeeded. \en"; \& } \& print "The result of the vector multiplication is $result.\en"; .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" The functions of this module are divised into 3 levels: .SS "Level 1 \- Vector operations" .IX Subsection "Level 1 - Vector operations" .ie n .IP """gsl_blas_sdsdot""" 3 .el .IP "\f(CWgsl_blas_sdsdot\fR" 3 .IX Item "gsl_blas_sdsdot" .PD 0 .ie n .IP """gsl_blas_dsdot""" 3 .el .IP "\f(CWgsl_blas_dsdot\fR" 3 .IX Item "gsl_blas_dsdot" .ie n .IP """gsl_blas_sdot""" 3 .el .IP "\f(CWgsl_blas_sdot\fR" 3 .IX Item "gsl_blas_sdot" .ie n .IP """gsl_blas_ddot($x, $y)""" 3 .el .IP "\f(CWgsl_blas_ddot($x, $y)\fR" 3 .IX Item "gsl_blas_ddot($x, $y)" .PD This function computes the scalar product x^T y for the vectors \f(CW$x\fR and \f(CW$y\fR. The function returns two values, the first is 0 if the operation succeeded, 1 otherwise and the second value is the result of the computation. .ie n .IP """gsl_blas_cdotu""" 3 .el .IP "\f(CWgsl_blas_cdotu\fR" 3 .IX Item "gsl_blas_cdotu" .PD 0 .ie n .IP """gsl_blas_cdotc""" 3 .el .IP "\f(CWgsl_blas_cdotc\fR" 3 .IX Item "gsl_blas_cdotc" .ie n .IP """gsl_blas_zdotu($x, $y, $dotu)""" 3 .el .IP "\f(CWgsl_blas_zdotu($x, $y, $dotu)\fR" 3 .IX Item "gsl_blas_zdotu($x, $y, $dotu)" .PD This function computes the complex scalar product x^T y for the complex vectors \&\f(CW$x\fR and \f(CW$y\fR, returning the result in the complex number \f(CW$dotu\fR. The function returns 0 if the operation succeeded, 1 otherwise. .ie n .IP """gsl_blas_zdotc($x, $y, $dotc)""" 3 .el .IP "\f(CWgsl_blas_zdotc($x, $y, $dotc)\fR" 3 .IX Item "gsl_blas_zdotc($x, $y, $dotc)" This function computes the complex conjugate scalar product x^H y for the complex vectors \f(CW$x\fR and \f(CW$y\fR, returning the result in the complex number \f(CW$dotc\fR. The function returns 0 if the operation succeeded, 1 otherwise. .ie n .IP """gsl_blas_snrm2"" =item ""gsl_blas_sasum""" 3 .el .IP "\f(CWgsl_blas_snrm2\fR =item \f(CWgsl_blas_sasum\fR" 3 .IX Item "gsl_blas_snrm2 =item gsl_blas_sasum" .PD 0 .ie n .IP """gsl_blas_dnrm2($x)""" 3 .el .IP "\f(CWgsl_blas_dnrm2($x)\fR" 3 .IX Item "gsl_blas_dnrm2($x)" .PD This function computes the Euclidean norm .Sp .Vb 1 \& ||x||_2 = \esqrt {\esum x_i^2} .Ve .Sp of the vector \f(CW$x\fR. .ie n .IP """gsl_blas_dasum($x)""" 3 .el .IP "\f(CWgsl_blas_dasum($x)\fR" 3 .IX Item "gsl_blas_dasum($x)" This function computes the absolute sum \esum |x_i| of the elements of the vector \f(CW$x\fR. .ie n .IP """gsl_blas_scnrm2""" 3 .el .IP "\f(CWgsl_blas_scnrm2\fR" 3 .IX Item "gsl_blas_scnrm2" .PD 0 .ie n .IP """gsl_blas_scasum""" 3 .el .IP "\f(CWgsl_blas_scasum\fR" 3 .IX Item "gsl_blas_scasum" .ie n .IP """gsl_blas_dznrm2($x)""" 3 .el .IP "\f(CWgsl_blas_dznrm2($x)\fR" 3 .IX Item "gsl_blas_dznrm2($x)" .PD This function computes the Euclidean norm of the complex vector \f(CW$x\fR, ||x||_2 = \esqrt {\esum (\eRe(x_i)^2 + \eIm(x_i)^2)}. .ie n .IP """gsl_blas_dzasum($x)""" 3 .el .IP "\f(CWgsl_blas_dzasum($x)\fR" 3 .IX Item "gsl_blas_dzasum($x)" This function computes the sum of the magnitudes of the real and imaginary parts of the complex vector \f(CW$x\fR, \esum |\eRe(x_i)| + |\eIm(x_i)|. .ie n .IP """gsl_blas_isamax""" 3 .el .IP "\f(CWgsl_blas_isamax\fR" 3 .IX Item "gsl_blas_isamax" .PD 0 .ie n .IP """gsl_blas_idamax""" 3 .el .IP "\f(CWgsl_blas_idamax\fR" 3 .IX Item "gsl_blas_idamax" .ie n .IP """gsl_blas_icamax""" 3 .el .IP "\f(CWgsl_blas_icamax\fR" 3 .IX Item "gsl_blas_icamax" .ie n .IP """gsl_blas_izamax """ 3 .el .IP "\f(CWgsl_blas_izamax \fR" 3 .IX Item "gsl_blas_izamax " .ie n .IP """gsl_blas_sswap""" 3 .el .IP "\f(CWgsl_blas_sswap\fR" 3 .IX Item "gsl_blas_sswap" .ie n .IP """gsl_blas_scopy""" 3 .el .IP "\f(CWgsl_blas_scopy\fR" 3 .IX Item "gsl_blas_scopy" .ie n .IP """gsl_blas_saxpy""" 3 .el .IP "\f(CWgsl_blas_saxpy\fR" 3 .IX Item "gsl_blas_saxpy" .ie n .IP """gsl_blas_dswap($x, $y)""" 3 .el .IP "\f(CWgsl_blas_dswap($x, $y)\fR" 3 .IX Item "gsl_blas_dswap($x, $y)" .PD This function exchanges the elements of the vectors \f(CW$x\fR and \f(CW$y\fR. The function returns 0 if the operation succeeded, 1 otherwise. .ie n .IP """gsl_blas_dcopy($x, $y)""" 3 .el .IP "\f(CWgsl_blas_dcopy($x, $y)\fR" 3 .IX Item "gsl_blas_dcopy($x, $y)" This function copies the elements of the vector \f(CW$x\fR into the vector \f(CW$y\fR. The function returns 0 if the operation succeeded, 1 otherwise. .ie n .IP """gsl_blas_daxpy($alpha, $x, $y)""" 3 .el .IP "\f(CWgsl_blas_daxpy($alpha, $x, $y)\fR" 3 .IX Item "gsl_blas_daxpy($alpha, $x, $y)" These functions compute the sum \f(CW$y\fR = \f(CW$alpha\fR * \f(CW$x\fR + \f(CW$y\fR for the vectors \f(CW$x\fR and \f(CW$y\fR. .ie n .IP """gsl_blas_cswap""" 3 .el .IP "\f(CWgsl_blas_cswap\fR" 3 .IX Item "gsl_blas_cswap" .PD 0 .ie n .IP """gsl_blas_ccopy """ 3 .el .IP "\f(CWgsl_blas_ccopy \fR" 3 .IX Item "gsl_blas_ccopy " .ie n .IP """gsl_blas_caxpy""" 3 .el .IP "\f(CWgsl_blas_caxpy\fR" 3 .IX Item "gsl_blas_caxpy" .ie n .IP """gsl_blas_zswap""" 3 .el .IP "\f(CWgsl_blas_zswap\fR" 3 .IX Item "gsl_blas_zswap" .ie n .IP """gsl_blas_zcopy""" 3 .el .IP "\f(CWgsl_blas_zcopy\fR" 3 .IX Item "gsl_blas_zcopy" .ie n .IP """gsl_blas_zaxpy """ 3 .el .IP "\f(CWgsl_blas_zaxpy \fR" 3 .IX Item "gsl_blas_zaxpy " .ie n .IP """gsl_blas_srotg""" 3 .el .IP "\f(CWgsl_blas_srotg\fR" 3 .IX Item "gsl_blas_srotg" .ie n .IP """gsl_blas_srotmg""" 3 .el .IP "\f(CWgsl_blas_srotmg\fR" 3 .IX Item "gsl_blas_srotmg" .ie n .IP """gsl_blas_srot""" 3 .el .IP "\f(CWgsl_blas_srot\fR" 3 .IX Item "gsl_blas_srot" .ie n .IP """gsl_blas_srotm """ 3 .el .IP "\f(CWgsl_blas_srotm \fR" 3 .IX Item "gsl_blas_srotm " .ie n .IP """gsl_blas_drotg""" 3 .el .IP "\f(CWgsl_blas_drotg\fR" 3 .IX Item "gsl_blas_drotg" .ie n .IP """gsl_blas_drotmg""" 3 .el .IP "\f(CWgsl_blas_drotmg\fR" 3 .IX Item "gsl_blas_drotmg" .ie n .IP """gsl_blas_drot($x, $y, $c, $s)""" 3 .el .IP "\f(CWgsl_blas_drot($x, $y, $c, $s)\fR" 3 .IX Item "gsl_blas_drot($x, $y, $c, $s)" .PD This function applies a Givens rotation (x', y') = (c x + s y, \-s x + c y) to the vectors \f(CW$x\fR, \f(CW$y\fR. .ie n .IP """gsl_blas_drotm """ 3 .el .IP "\f(CWgsl_blas_drotm \fR" 3 .IX Item "gsl_blas_drotm " .PD 0 .ie n .IP """gsl_blas_sscal""" 3 .el .IP "\f(CWgsl_blas_sscal\fR" 3 .IX Item "gsl_blas_sscal" .ie n .IP """gsl_blas_dscal($alpha, $x)""" 3 .el .IP "\f(CWgsl_blas_dscal($alpha, $x)\fR" 3 .IX Item "gsl_blas_dscal($alpha, $x)" .PD This function rescales the vector \f(CW$x\fR by the multiplicative factor \f(CW$alpha\fR. .ie n .IP """gsl_blas_cscal""" 3 .el .IP "\f(CWgsl_blas_cscal\fR" 3 .IX Item "gsl_blas_cscal" .PD 0 .ie n .IP """gsl_blas_zscal """ 3 .el .IP "\f(CWgsl_blas_zscal \fR" 3 .IX Item "gsl_blas_zscal " .ie n .IP """gsl_blas_csscal""" 3 .el .IP "\f(CWgsl_blas_csscal\fR" 3 .IX Item "gsl_blas_csscal" .ie n .IP """gsl_blas_zdscal""" 3 .el .IP "\f(CWgsl_blas_zdscal\fR" 3 .IX Item "gsl_blas_zdscal" .PD .SS "Level 2 \- Matrix-vector operations" .IX Subsection "Level 2 - Matrix-vector operations" .ie n .IP """gsl_blas_sgemv""" 3 .el .IP "\f(CWgsl_blas_sgemv\fR" 3 .IX Item "gsl_blas_sgemv" .PD 0 .ie n .IP """gsl_blas_strmv """ 3 .el .IP "\f(CWgsl_blas_strmv \fR" 3 .IX Item "gsl_blas_strmv " .ie n .IP """gsl_blas_strsv""" 3 .el .IP "\f(CWgsl_blas_strsv\fR" 3 .IX Item "gsl_blas_strsv" .ie n .IP """gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)"" \- This function computes the matrix-vector product and sum y = \ealpha op(A) x + \ebeta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the \s-1CBLAS\s0 module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y)\fR \- This function computes the matrix-vector product and sum y = \ealpha op(A) x + \ebeta y, where op(A) = A, A^T, A^H for \f(CW$TransA\fR = \f(CW$CblasNoTrans\fR, \f(CW$CblasTrans\fR, \f(CW$CblasConjTrans\fR (constant values coming from the \s-1CBLAS\s0 module). \f(CW$A\fR is a matrix and \f(CW$x\fR and \f(CW$y\fR are vectors. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dgemv($TransA, $alpha, $A, $x, $beta, $y) - This function computes the matrix-vector product and sum y = alpha op(A) x + beta y, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). $A is a matrix and $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)"" \- This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the \s-1CBLAS\s0 module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x)\fR \- This function computes the matrix-vector product x = op(A) x for the triangular matrix \f(CW$A\fR, where op(A) = A, A^T, A^H for \f(CW$TransA\fR = \f(CW$CblasNoTrans\fR, \f(CW$CblasTrans\fR, \f(CW$CblasConjTrans\fR (constant values coming from the \s-1CBLAS\s0 module). When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle of \f(CW$A\fR is used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle of \f(CW$A\fR is used. If \f(CW$Diag\fR is \f(CW$CblasNonUnit\fR then the diagonal of the matrix is used, but if \f(CW$Diag\fR is \f(CW$CblasUnit\fR then the diagonal elements of the matrix \f(CW$A\fR are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dtrmv($Uplo, $TransA, $Diag, $A, $x) - This function computes the matrix-vector product x = op(A) x for the triangular matrix $A, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)"" \- This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the \s-1CBLAS\s0 module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x)\fR \- This function computes inv(op(A)) x for the vector \f(CW$x\fR, where op(A) = A, A^T, A^H for \f(CW$TransA\fR = \f(CW$CblasNoTrans\fR, \f(CW$CblasTrans\fR, \f(CW$CblasConjTrans\fR (constant values coming from the \s-1CBLAS\s0 module). When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle of \f(CW$A\fR is used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle of \f(CW$A\fR is used. If \f(CW$Diag\fR is \f(CW$CblasNonUnit\fR then the diagonal of the matrix is used, but if \f(CW$Diag\fR is \f(CW$CblasUnit\fR then the diagonal elements of the matrix \f(CW$A\fR are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dtrsv($Uplo, $TransA, $Diag, $A, $x) - This function computes inv(op(A)) x for the vector $x, where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans (constant values coming from the CBLAS module). When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of the matrix is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_cgemv """ 3 .el .IP "\f(CWgsl_blas_cgemv \fR" 3 .IX Item "gsl_blas_cgemv " .ie n .IP """gsl_blas_ctrmv""" 3 .el .IP "\f(CWgsl_blas_ctrmv\fR" 3 .IX Item "gsl_blas_ctrmv" .ie n .IP """gsl_blas_ctrsv""" 3 .el .IP "\f(CWgsl_blas_ctrsv\fR" 3 .IX Item "gsl_blas_ctrsv" .ie n .IP """gsl_blas_zgemv """ 3 .el .IP "\f(CWgsl_blas_zgemv \fR" 3 .IX Item "gsl_blas_zgemv " .ie n .IP """gsl_blas_ztrmv""" 3 .el .IP "\f(CWgsl_blas_ztrmv\fR" 3 .IX Item "gsl_blas_ztrmv" .ie n .IP """gsl_blas_ztrsv""" 3 .el .IP "\f(CWgsl_blas_ztrsv\fR" 3 .IX Item "gsl_blas_ztrsv" .ie n .IP """gsl_blas_ssymv""" 3 .el .IP "\f(CWgsl_blas_ssymv\fR" 3 .IX Item "gsl_blas_ssymv" .ie n .IP """gsl_blas_sger """ 3 .el .IP "\f(CWgsl_blas_sger \fR" 3 .IX Item "gsl_blas_sger " .ie n .IP """gsl_blas_ssyr""" 3 .el .IP "\f(CWgsl_blas_ssyr\fR" 3 .IX Item "gsl_blas_ssyr" .ie n .IP """gsl_blas_ssyr2""" 3 .el .IP "\f(CWgsl_blas_ssyr2\fR" 3 .IX Item "gsl_blas_ssyr2" .ie n .IP """gsl_blas_dsymv""" 3 .el .IP "\f(CWgsl_blas_dsymv\fR" 3 .IX Item "gsl_blas_dsymv" .ie n .IP """gsl_blas_dger($alpha, $x, $y, $A)"" \- This function computes the rank\-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dger($alpha, $x, $y, $A)\fR \- This function computes the rank\-1 update A = alpha x y^T + A of the matrix \f(CW$A\fR. \f(CW$x\fR and \f(CW$y\fR are vectors. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dger($alpha, $x, $y, $A) - This function computes the rank-1 update A = alpha x y^T + A of the matrix $A. $x and $y are vectors. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_dsyr($Uplo, $alpha, $x, $A)"" \- This function computes the symmetric rank\-1 update A = \ealpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dsyr($Uplo, $alpha, $x, $A)\fR \- This function computes the symmetric rank\-1 update A = \ealpha x x^T + A of the symmetric matrix \f(CW$A\fR and the vector \f(CW$x\fR. Since the matrix \f(CW$A\fR is symmetric only its upper half or lower half need to be stored. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$A\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$A\fR are used. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dsyr($Uplo, $alpha, $x, $A) - This function computes the symmetric rank-1 update A = alpha x x^T + A of the symmetric matrix $A and the vector $x. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A)"" \- This function computes the symmetric rank\-2 update A = \ealpha x y^T + \ealpha y x^T + A of the symmetric matrix $A, the vector $x and vector $y. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used." 3 .el .IP "\f(CWgsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A)\fR \- This function computes the symmetric rank\-2 update A = \ealpha x y^T + \ealpha y x^T + A of the symmetric matrix \f(CW$A\fR, the vector \f(CW$x\fR and vector \f(CW$y\fR. Since the matrix \f(CW$A\fR is symmetric only its upper half or lower half need to be stored. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$A\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$A\fR are used." 3 .IX Item "gsl_blas_dsyr2($Uplo, $alpha, $x, $y, $A) - This function computes the symmetric rank-2 update A = alpha x y^T + alpha y x^T + A of the symmetric matrix $A, the vector $x and vector $y. Since the matrix $A is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used." .ie n .IP """gsl_blas_chemv""" 3 .el .IP "\f(CWgsl_blas_chemv\fR" 3 .IX Item "gsl_blas_chemv" .ie n .IP """gsl_blas_cgeru """ 3 .el .IP "\f(CWgsl_blas_cgeru \fR" 3 .IX Item "gsl_blas_cgeru " .ie n .IP """gsl_blas_cgerc""" 3 .el .IP "\f(CWgsl_blas_cgerc\fR" 3 .IX Item "gsl_blas_cgerc" .ie n .IP """gsl_blas_cher""" 3 .el .IP "\f(CWgsl_blas_cher\fR" 3 .IX Item "gsl_blas_cher" .ie n .IP """gsl_blas_cher2""" 3 .el .IP "\f(CWgsl_blas_cher2\fR" 3 .IX Item "gsl_blas_cher2" .ie n .IP """gsl_blas_zhemv """ 3 .el .IP "\f(CWgsl_blas_zhemv \fR" 3 .IX Item "gsl_blas_zhemv " .ie n .IP """gsl_blas_zgeru($alpha, $x, $y, $A)"" \- This function computes the rank\-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_zgeru($alpha, $x, $y, $A)\fR \- This function computes the rank\-1 update A = alpha x y^T + A of the complex matrix \f(CW$A\fR. \f(CW$alpha\fR is a complex number and \f(CW$x\fR and \f(CW$y\fR are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_zgeru($alpha, $x, $y, $A) - This function computes the rank-1 update A = alpha x y^T + A of the complex matrix $A. $alpha is a complex number and $x and $y are complex vectors. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_zgerc""" 3 .el .IP "\f(CWgsl_blas_zgerc\fR" 3 .IX Item "gsl_blas_zgerc" .ie n .IP """gsl_blas_zher($Uplo, $alpha, $x, $A)"" \- This function computes the hermitian rank\-1 update A = \ealpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to zero. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_zher($Uplo, $alpha, $x, $A)\fR \- This function computes the hermitian rank\-1 update A = \ealpha x x^H + A of the hermitian matrix \f(CW$A\fR and of the complex vector \f(CW$x\fR. Since the matrix \f(CW$A\fR is hermitian only its upper half or lower half need to be stored. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$A\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$A\fR are used. The imaginary elements of the diagonal are automatically set to zero. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_zher($Uplo, $alpha, $x, $A) - This function computes the hermitian rank-1 update A = alpha x x^H + A of the hermitian matrix $A and of the complex vector $x. Since the matrix $A is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The imaginary elements of the diagonal are automatically set to zero. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_zher2 """ 3 .el .IP "\f(CWgsl_blas_zher2 \fR" 3 .IX Item "gsl_blas_zher2 " .PD .SS "Level 3 \- Matrix-matrix operations" .IX Subsection "Level 3 - Matrix-matrix operations" .ie n .IP """gsl_blas_sgemm""" 3 .el .IP "\f(CWgsl_blas_sgemm\fR" 3 .IX Item "gsl_blas_sgemm" .PD 0 .ie n .IP """gsl_blas_ssymm""" 3 .el .IP "\f(CWgsl_blas_ssymm\fR" 3 .IX Item "gsl_blas_ssymm" .ie n .IP """gsl_blas_ssyrk""" 3 .el .IP "\f(CWgsl_blas_ssyrk\fR" 3 .IX Item "gsl_blas_ssyrk" .ie n .IP """gsl_blas_ssyr2k """ 3 .el .IP "\f(CWgsl_blas_ssyr2k \fR" 3 .IX Item "gsl_blas_ssyr2k " .ie n .IP """gsl_blas_strmm""" 3 .el .IP "\f(CWgsl_blas_strmm\fR" 3 .IX Item "gsl_blas_strmm" .ie n .IP """gsl_blas_strsm""" 3 .el .IP "\f(CWgsl_blas_strsm\fR" 3 .IX Item "gsl_blas_strsm" .ie n .IP """gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)"" \- This function computes the matrix-matrix product and sum C = \ealpha op(A) op(B) + \ebeta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)\fR \- This function computes the matrix-matrix product and sum C = \ealpha op(A) op(B) + \ebeta C where op(A) = A, A^T, A^H for \f(CW$TransA\fR = \f(CW$CblasNoTrans\fR, \f(CW$CblasTrans\fR, \f(CW$CblasConjTrans\fR and similarly for the parameter \f(CW$TransB\fR. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C) - This function computes the matrix-matrix product and sum C = alpha op(A) op(B) + beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)"" \- This function computes the matrix-matrix product and sum C = \ealpha A B + \ebeta C for $Side is $CblasLeft and C = \ealpha B A + \ebeta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)\fR \- This function computes the matrix-matrix product and sum C = \ealpha A B + \ebeta C for \f(CW$Side\fR is \f(CW$CblasLeft\fR and C = \ealpha B A + \ebeta C for \f(CW$Side\fR is \f(CW$CblasRight\fR, where the matrix \f(CW$A\fR is symmetric. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$A\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$A\fR are used. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C) - This function computes the matrix-matrix product and sum C = alpha A B + beta C for $Side is $CblasLeft and C = alpha B A + beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)"" \- This function computes a rank-k update of the symmetric matrix $C, C = \ealpha A A^T + \ebeta C when $Trans is $CblasNoTrans and C = \ealpha A^T A + \ebeta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)\fR \- This function computes a rank-k update of the symmetric matrix \f(CW$C\fR, C = \ealpha A A^T + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasNoTrans\fR and C = \ealpha A^T A + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasTrans\fR. Since the matrix \f(CW$C\fR is symmetric only its upper half or lower half need to be stored. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$C\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$C\fR are used. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dsyrk($Uplo, $Trans, $alpha, $A, $beta, $C) - This function computes a rank-k update of the symmetric matrix $C, C = alpha A A^T + beta C when $Trans is $CblasNoTrans and C = alpha A^T A + beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)"" \- This function computes a rank\-2k update of the symmetric matrix $C, C = \ealpha A B^T + \ealpha B A^T + \ebeta C when $Trans is $CblasNoTrans and C = \ealpha A^T B + \ealpha B^T A + \ebeta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)\fR \- This function computes a rank\-2k update of the symmetric matrix \f(CW$C\fR, C = \ealpha A B^T + \ealpha B A^T + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasNoTrans\fR and C = \ealpha A^T B + \ealpha B^T A + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasTrans\fR. Since the matrix \f(CW$C\fR is symmetric only its upper half or lower half need to be stored. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$C\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$C\fR are used. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C) - This function computes a rank-2k update of the symmetric matrix $C, C = alpha A B^T + alpha B A^T + beta C when $Trans is $CblasNoTrans and C = alpha A^T B + alpha B^T A + beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)"" \- This function computes the matrix-matrix product B = \ealpha op(A) B for $Side is $CblasLeft and B = \ealpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of $A is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)\fR \- This function computes the matrix-matrix product B = \ealpha op(A) B for \f(CW$Side\fR is \f(CW$CblasLeft\fR and B = \ealpha B op(A) for \f(CW$Side\fR is \f(CW$CblasRight\fR. The matrix \f(CW$A\fR is triangular and op(A) = A, A^T, A^H for \f(CW$TransA\fR = \f(CW$CblasNoTrans\fR, \f(CW$CblasTrans\fR, \f(CW$CblasConjTrans\fR. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle of \f(CW$A\fR is used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle of \f(CW$A\fR is used. If \f(CW$Diag\fR is \f(CW$CblasNonUnit\fR then the diagonal of \f(CW$A\fR is used, but if \f(CW$Diag\fR is \f(CW$CblasUnit\fR then the diagonal elements of the matrix \f(CW$A\fR are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dtrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B) - This function computes the matrix-matrix product B = alpha op(A) B for $Side is $CblasLeft and B = alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of $A is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)"" \- This function computes the inverse-matrix matrix product B = \ealpha op(inv(A))B for $Side is $CblasLeft and B = \ealpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of $A is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)\fR \- This function computes the inverse-matrix matrix product B = \ealpha op(inv(A))B for \f(CW$Side\fR is \f(CW$CblasLeft\fR and B = \ealpha B op(inv(A)) for \f(CW$Side\fR is \f(CW$CblasRight\fR. The matrix \f(CW$A\fR is triangular and op(A) = A, A^T, A^H for \f(CW$TransA\fR = \f(CW$CblasNoTrans\fR, \f(CW$CblasTrans\fR, \f(CW$CblasConjTrans\fR. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle of \f(CW$A\fR is used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle of \f(CW$A\fR is used. If \f(CW$Diag\fR is \f(CW$CblasNonUnit\fR then the diagonal of \f(CW$A\fR is used, but if \f(CW$Diag\fR is \f(CW$CblasUnit\fR then the diagonal elements of the matrix \f(CW$A\fR are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_dtrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B) - This function computes the inverse-matrix matrix product B = alpha op(inv(A))B for $Side is $CblasLeft and B = alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of $A is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_cgemm""" 3 .el .IP "\f(CWgsl_blas_cgemm\fR" 3 .IX Item "gsl_blas_cgemm" .ie n .IP """gsl_blas_csymm""" 3 .el .IP "\f(CWgsl_blas_csymm\fR" 3 .IX Item "gsl_blas_csymm" .ie n .IP """gsl_blas_csyrk""" 3 .el .IP "\f(CWgsl_blas_csyrk\fR" 3 .IX Item "gsl_blas_csyrk" .ie n .IP """gsl_blas_csyr2k """ 3 .el .IP "\f(CWgsl_blas_csyr2k \fR" 3 .IX Item "gsl_blas_csyr2k " .ie n .IP """gsl_blas_ctrmm""" 3 .el .IP "\f(CWgsl_blas_ctrmm\fR" 3 .IX Item "gsl_blas_ctrmm" .ie n .IP """gsl_blas_ctrsm""" 3 .el .IP "\f(CWgsl_blas_ctrsm\fR" 3 .IX Item "gsl_blas_ctrsm" .ie n .IP """gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)"" \- This function computes the matrix-matrix product and sum C = \ealpha op(A) op(B) + \ebeta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices" 3 .el .IP "\f(CWgsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C)\fR \- This function computes the matrix-matrix product and sum C = \ealpha op(A) op(B) + \ebeta C where op(A) = A, A^T, A^H for \f(CW$TransA\fR = \f(CW$CblasNoTrans\fR, \f(CW$CblasTrans\fR, \f(CW$CblasConjTrans\fR and similarly for the parameter \f(CW$TransB\fR. The function returns 0 if the operation succeeded, 1 otherwise. \f(CW$A\fR, \f(CW$B\fR and \f(CW$C\fR are complex matrices" 3 .IX Item "gsl_blas_zgemm($TransA, $TransB, $alpha, $A, $B, $beta, $C) - This function computes the matrix-matrix product and sum C = alpha op(A) op(B) + beta C where op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans and similarly for the parameter $TransB. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices" .ie n .IP """gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)"" \- This function computes the matrix-matrix product and sum C = \ealpha A B + \ebeta C for $Side is $CblasLeft and C = \ealpha B A + \ebeta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C)\fR \- This function computes the matrix-matrix product and sum C = \ealpha A B + \ebeta C for \f(CW$Side\fR is \f(CW$CblasLeft\fR and C = \ealpha B A + \ebeta C for \f(CW$Side\fR is \f(CW$CblasRight\fR, where the matrix \f(CW$A\fR is symmetric. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$A\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$A\fR are used. \f(CW$A\fR, \f(CW$B\fR and \f(CW$C\fR are complex matrices. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_zsymm($Side, $Uplo, $alpha, $A, $B, $beta, $C) - This function computes the matrix-matrix product and sum C = alpha A B + beta C for $Side is $CblasLeft and C = alpha B A + beta C for $Side is $CblasRight, where the matrix $A is symmetric. When $Uplo is $CblasUpper then the upper triangle and diagonal of $A are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $A are used. $A, $B and $C are complex matrices. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)"" \- This function computes a rank-k update of the symmetric complex matrix $C, C = \ealpha A A^T + \ebeta C when $Trans is $CblasNoTrans and C = \ealpha A^T A + \ebeta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C)\fR \- This function computes a rank-k update of the symmetric complex matrix \f(CW$C\fR, C = \ealpha A A^T + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasNoTrans\fR and C = \ealpha A^T A + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasTrans\fR. Since the matrix \f(CW$C\fR is symmetric only its upper half or lower half need to be stored. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$C\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$C\fR are used. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_zsyrk($Uplo, $Trans, $alpha, $A, $beta, $C) - This function computes a rank-k update of the symmetric complex matrix $C, C = alpha A A^T + beta C when $Trans is $CblasNoTrans and C = alpha A^T A + beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The function returns 0 if the operation succeeded, 1 otherwise." .ie n .IP """gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)"" \- This function computes a rank\-2k update of the symmetric matrix $C, C = \ealpha A B^T + \ealpha B A^T + \ebeta C when $Trans is $CblasNoTrans and C = \ealpha A^T B + \ealpha B^T A + \ebeta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices and $beta is a complex number." 3 .el .IP "\f(CWgsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)\fR \- This function computes a rank\-2k update of the symmetric matrix \f(CW$C\fR, C = \ealpha A B^T + \ealpha B A^T + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasNoTrans\fR and C = \ealpha A^T B + \ealpha B^T A + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasTrans\fR. Since the matrix \f(CW$C\fR is symmetric only its upper half or lower half need to be stored. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$C\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$C\fR are used. The function returns 0 if the operation succeeded, 1 otherwise. \f(CW$A\fR, \f(CW$B\fR and \f(CW$C\fR are complex matrices and \f(CW$beta\fR is a complex number." 3 .IX Item "gsl_blas_zsyr2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C) - This function computes a rank-2k update of the symmetric matrix $C, C = alpha A B^T + alpha B A^T + beta C when $Trans is $CblasNoTrans and C = alpha A^T B + alpha B^T A + beta C when $Trans is $CblasTrans. Since the matrix $C is symmetric only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices and $beta is a complex number." .ie n .IP """gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)"" \- This function computes the matrix-matrix product B = \ealpha op(A) B for $Side is $CblasLeft and B = \ealpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of $A is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise. $A and $B are complex matrices and $alpha is a complex number." 3 .el .IP "\f(CWgsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)\fR \- This function computes the matrix-matrix product B = \ealpha op(A) B for \f(CW$Side\fR is \f(CW$CblasLeft\fR and B = \ealpha B op(A) for \f(CW$Side\fR is \f(CW$CblasRight\fR. The matrix \f(CW$A\fR is triangular and op(A) = A, A^T, A^H for \f(CW$TransA\fR = \f(CW$CblasNoTrans\fR, \f(CW$CblasTrans\fR, \f(CW$CblasConjTrans\fR. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle of \f(CW$A\fR is used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle of \f(CW$A\fR is used. If \f(CW$Diag\fR is \f(CW$CblasNonUnit\fR then the diagonal of \f(CW$A\fR is used, but if \f(CW$Diag\fR is \f(CW$CblasUnit\fR then the diagonal elements of the matrix \f(CW$A\fR are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise. \f(CW$A\fR and \f(CW$B\fR are complex matrices and \f(CW$alpha\fR is a complex number." 3 .IX Item "gsl_blas_ztrmm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B) - This function computes the matrix-matrix product B = alpha op(A) B for $Side is $CblasLeft and B = alpha B op(A) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of $A is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise. $A and $B are complex matrices and $alpha is a complex number." .ie n .IP """gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)"" \- This function computes the inverse-matrix matrix product B = \ealpha op(inv(A))B for $Side is $CblasLeft and B = \ealpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of $A is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise. $A and $B are complex matrices and $alpha is a complex number." 3 .el .IP "\f(CWgsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B)\fR \- This function computes the inverse-matrix matrix product B = \ealpha op(inv(A))B for \f(CW$Side\fR is \f(CW$CblasLeft\fR and B = \ealpha B op(inv(A)) for \f(CW$Side\fR is \f(CW$CblasRight\fR. The matrix \f(CW$A\fR is triangular and op(A) = A, A^T, A^H for \f(CW$TransA\fR = \f(CW$CblasNoTrans\fR, \f(CW$CblasTrans\fR, \f(CW$CblasConjTrans\fR. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle of \f(CW$A\fR is used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle of \f(CW$A\fR is used. If \f(CW$Diag\fR is \f(CW$CblasNonUnit\fR then the diagonal of \f(CW$A\fR is used, but if \f(CW$Diag\fR is \f(CW$CblasUnit\fR then the diagonal elements of the matrix \f(CW$A\fR are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise. \f(CW$A\fR and \f(CW$B\fR are complex matrices and \f(CW$alpha\fR is a complex number." 3 .IX Item "gsl_blas_ztrsm($Side, $Uplo, $TransA, $Diag, $alpha, $A, $B) - This function computes the inverse-matrix matrix product B = alpha op(inv(A))B for $Side is $CblasLeft and B = alpha B op(inv(A)) for $Side is $CblasRight. The matrix $A is triangular and op(A) = A, A^T, A^H for $TransA = $CblasNoTrans, $CblasTrans, $CblasConjTrans. When $Uplo is $CblasUpper then the upper triangle of $A is used, and when $Uplo is $CblasLower then the lower triangle of $A is used. If $Diag is $CblasNonUnit then the diagonal of $A is used, but if $Diag is $CblasUnit then the diagonal elements of the matrix $A are taken as unity and are not referenced. The function returns 0 if the operation succeeded, 1 otherwise. $A and $B are complex matrices and $alpha is a complex number." .ie n .IP """gsl_blas_chemm""" 3 .el .IP "\f(CWgsl_blas_chemm\fR" 3 .IX Item "gsl_blas_chemm" .ie n .IP """gsl_blas_cherk""" 3 .el .IP "\f(CWgsl_blas_cherk\fR" 3 .IX Item "gsl_blas_cherk" .ie n .IP """gsl_blas_cher2k""" 3 .el .IP "\f(CWgsl_blas_cher2k\fR" 3 .IX Item "gsl_blas_cher2k" .ie n .IP """gsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C)"" \- This function computes the matrix-matrix product and sum C = \ealpha A B + \ebeta C for $Side is $CblasLeft and C = \ealpha B A + \ebeta C for $Side is $CblasRight, where the matrix $A is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero." 3 .el .IP "\f(CWgsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C)\fR \- This function computes the matrix-matrix product and sum C = \ealpha A B + \ebeta C for \f(CW$Side\fR is \f(CW$CblasLeft\fR and C = \ealpha B A + \ebeta C for \f(CW$Side\fR is \f(CW$CblasRight\fR, where the matrix \f(CW$A\fR is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero." 3 .IX Item "gsl_blas_zhemm($Side, $Uplo, $alpha, $A, $B, $beta, $C) - This function computes the matrix-matrix product and sum C = alpha A B + beta C for $Side is $CblasLeft and C = alpha B A + beta C for $Side is $CblasRight, where the matrix $A is hermitian. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero." .ie n .IP """gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)"" \- This function computes a rank-k update of the hermitian matrix $C, C = \ealpha A A^H + \ebeta C when $Trans is $CblasNoTrans and C = \ealpha A^H A + \ebeta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The imaginary elements of the diagonal are automatically set to zero. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices and $alpha and $beta are complex numbers." 3 .el .IP "\f(CWgsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C)\fR \- This function computes a rank-k update of the hermitian matrix \f(CW$C\fR, C = \ealpha A A^H + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasNoTrans\fR and C = \ealpha A^H A + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasTrans\fR. Since the matrix \f(CW$C\fR is hermitian only its upper half or lower half need to be stored. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$C\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$C\fR are used. The imaginary elements of the diagonal are automatically set to zero. The function returns 0 if the operation succeeded, 1 otherwise. \f(CW$A\fR, \f(CW$B\fR and \f(CW$C\fR are complex matrices and \f(CW$alpha\fR and \f(CW$beta\fR are complex numbers." 3 .IX Item "gsl_blas_zherk($Uplo, $Trans, $alpha, $A, $beta, $C) - This function computes a rank-k update of the hermitian matrix $C, C = alpha A A^H + beta C when $Trans is $CblasNoTrans and C = alpha A^H A + beta C when $Trans is $CblasTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The imaginary elements of the diagonal are automatically set to zero. The function returns 0 if the operation succeeded, 1 otherwise. $A, $B and $C are complex matrices and $alpha and $beta are complex numbers." .ie n .IP """gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)"" \- This function computes a rank\-2k update of the hermitian matrix $C, C = \ealpha A B^H + \ealpha^* B A^H + \ebeta C when $Trans is $CblasNoTrans and C = \ealpha A^H B + \ealpha^* B^H A + \ebeta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The imaginary elements of the diagonal are automatically set to zero. The function returns 0 if the operation succeeded, 1 otherwise." 3 .el .IP "\f(CWgsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C)\fR \- This function computes a rank\-2k update of the hermitian matrix \f(CW$C\fR, C = \ealpha A B^H + \ealpha^* B A^H + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasNoTrans\fR and C = \ealpha A^H B + \ealpha^* B^H A + \ebeta C when \f(CW$Trans\fR is \f(CW$CblasConjTrans\fR. Since the matrix \f(CW$C\fR is hermitian only its upper half or lower half need to be stored. When \f(CW$Uplo\fR is \f(CW$CblasUpper\fR then the upper triangle and diagonal of \f(CW$C\fR are used, and when \f(CW$Uplo\fR is \f(CW$CblasLower\fR then the lower triangle and diagonal of \f(CW$C\fR are used. The imaginary elements of the diagonal are automatically set to zero. The function returns 0 if the operation succeeded, 1 otherwise." 3 .IX Item "gsl_blas_zher2k($Uplo, $Trans, $alpha, $A, $B, $beta, $C) - This function computes a rank-2k update of the hermitian matrix $C, C = alpha A B^H + alpha^* B A^H + beta C when $Trans is $CblasNoTrans and C = alpha A^H B + alpha^* B^H A + beta C when $Trans is $CblasConjTrans. Since the matrix $C is hermitian only its upper half or lower half need to be stored. When $Uplo is $CblasUpper then the upper triangle and diagonal of $C are used, and when $Uplo is $CblasLower then the lower triangle and diagonal of $C are used. The imaginary elements of the diagonal are automatically set to zero. The function returns 0 if the operation succeeded, 1 otherwise." .PD .PP You have to add the functions you want to use inside the qw /put_funtion_here /. You can also write use Math::GSL::BLAS qw/:all/ to use all available functions of the module. Other tags are also available, here is a complete list of all tags for this module : .ie n .IP """level1""" 3 .el .IP "\f(CWlevel1\fR" 3 .IX Item "level1" .PD 0 .ie n .IP """level2""" 3 .el .IP "\f(CWlevel2\fR" 3 .IX Item "level2" .ie n .IP """level3""" 3 .el .IP "\f(CWlevel3\fR" 3 .IX Item "level3" .PD .PP For more information on the functions, we refer you to the \s-1GSL\s0 offcial documentation: .SH "AUTHORS" .IX Header "AUTHORS" Jonathan \*(L"Duke\*(R" Leto and Thierry Moisan .SH "COPYRIGHT AND LICENSE" .IX Header "COPYRIGHT AND LICENSE" Copyright (C) 2008\-2020 Jonathan \*(L"Duke\*(R" Leto and Thierry Moisan .PP This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.