.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.40) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" ======================================================================== .\" .IX Title "Digest::SHA 3pm" .TH Digest::SHA 3pm "2020-11-09" "perl v5.32.0" "User Contributed Perl Documentation" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" Digest::SHA \- Perl extension for SHA\-1/224/256/384/512 .SH "SYNOPSIS" .IX Header "SYNOPSIS" In programs: .PP .Vb 1 \& # Functional interface \& \& use Digest::SHA qw(sha1 sha1_hex sha1_base64 ...); \& \& $digest = sha1($data); \& $digest = sha1_hex($data); \& $digest = sha1_base64($data); \& \& $digest = sha256($data); \& $digest = sha384_hex($data); \& $digest = sha512_base64($data); \& \& # Object\-oriented \& \& use Digest::SHA; \& \& $sha = Digest::SHA\->new($alg); \& \& $sha\->add($data); # feed data into stream \& \& $sha\->addfile(*F); \& $sha\->addfile($filename); \& \& $sha\->add_bits($bits); \& $sha\->add_bits($data, $nbits); \& \& $sha_copy = $sha\->clone; # make copy of digest object \& $state = $sha\->getstate; # save current state to string \& $sha\->putstate($state); # restore previous $state \& \& $digest = $sha\->digest; # compute digest \& $digest = $sha\->hexdigest; \& $digest = $sha\->b64digest; .Ve .PP From the command line: .PP .Vb 1 \& $ shasum files \& \& $ shasum \-\-help .Ve .SH "SYNOPSIS (HMAC-SHA)" .IX Header "SYNOPSIS (HMAC-SHA)" .Vb 1 \& # Functional interface only \& \& use Digest::SHA qw(hmac_sha1 hmac_sha1_hex ...); \& \& $digest = hmac_sha1($data, $key); \& $digest = hmac_sha224_hex($data, $key); \& $digest = hmac_sha256_base64($data, $key); .Ve .SH "ABSTRACT" .IX Header "ABSTRACT" Digest::SHA is a complete implementation of the \s-1NIST\s0 Secure Hash Standard. It gives Perl programmers a convenient way to calculate \s-1SHA\-1, SHA\-224, SHA\-256, SHA\-384, SHA\-512, SHA\-512/224,\s0 and \s-1SHA\-512/256\s0 message digests. The module can handle all types of input, including partial-byte data. .SH "DESCRIPTION" .IX Header "DESCRIPTION" Digest::SHA is written in C for speed. If your platform lacks a C compiler, you can install the functionally equivalent (but much slower) Digest::SHA::PurePerl module. .PP The programming interface is easy to use: it's the same one found in \s-1CPAN\s0's Digest module. So, if your applications currently use Digest::MD5 and you'd prefer the stronger security of \s-1SHA,\s0 it's a simple matter to convert them. .PP The interface provides two ways to calculate digests: all-at-once, or in stages. To illustrate, the following short program computes the \s-1SHA\-256\s0 digest of \*(L"hello world\*(R" using each approach: .PP .Vb 1 \& use Digest::SHA qw(sha256_hex); \& \& $data = "hello world"; \& @frags = split(//, $data); \& \& # all\-at\-once (Functional style) \& $digest1 = sha256_hex($data); \& \& # in\-stages (OOP style) \& $state = Digest::SHA\->new(256); \& for (@frags) { $state\->add($_) } \& $digest2 = $state\->hexdigest; \& \& print $digest1 eq $digest2 ? \& "whew!\en" : "oops!\en"; .Ve .PP To calculate the digest of an n\-bit message where \fIn\fR is not a multiple of 8, use the \fI\f(BIadd_bits()\fI\fR method. For example, consider the 446\-bit message consisting of the bit-string \*(L"110\*(R" repeated 148 times, followed by \*(L"11\*(R". Here's how to display its \s-1SHA\-1\s0 digest: .PP .Vb 4 \& use Digest::SHA; \& $bits = "110" x 148 . "11"; \& $sha = Digest::SHA\->new(1)\->add_bits($bits); \& print $sha\->hexdigest, "\en"; .Ve .PP Note that for larger bit-strings, it's more efficient to use the two-argument version \fIadd_bits($data, \f(CI$nbits\fI)\fR, where \fI\f(CI$data\fI\fR is in the customary packed binary format used for Perl strings. .PP The module also lets you save intermediate \s-1SHA\s0 states to a string. The \&\fI\f(BIgetstate()\fI\fR method generates portable, human-readable text describing the current state of computation. You can subsequently restore that state with \fI\f(BIputstate()\fI\fR to resume where the calculation left off. .PP To see what a state description looks like, just run the following: .PP .Vb 2 \& use Digest::SHA; \& print Digest::SHA\->new\->add("Shaw" x 1962)\->getstate; .Ve .PP As an added convenience, the Digest::SHA module offers routines to calculate keyed hashes using the \s-1HMAC\-SHA\-1/224/256/384/512\s0 algorithms. These services exist in functional form only, and mimic the style and behavior of the \fI\f(BIsha()\fI\fR, \fI\f(BIsha_hex()\fI\fR, and \&\fI\f(BIsha_base64()\fI\fR functions. .PP .Vb 1 \& # Test vector from draft\-ietf\-ipsec\-ciph\-sha\-256\-01.txt \& \& use Digest::SHA qw(hmac_sha256_hex); \& print hmac_sha256_hex("Hi There", chr(0x0b) x 32), "\en"; .Ve .SH "UNICODE AND SIDE EFFECTS" .IX Header "UNICODE AND SIDE EFFECTS" Perl supports Unicode strings as of version 5.6. Such strings may contain wide characters, namely, characters whose ordinal values are greater than 255. This can cause problems for digest algorithms such as \s-1SHA\s0 that are specified to operate on sequences of bytes. .PP The rule by which Digest::SHA handles a Unicode string is easy to state, but potentially confusing to grasp: the string is interpreted as a sequence of byte values, where each byte value is equal to the ordinal value (viz. code point) of its corresponding Unicode character. That way, the Unicode string 'abc' has exactly the same digest value as the ordinary string 'abc'. .PP Since a wide character does not fit into a byte, the Digest::SHA routines croak if they encounter one. Whereas if a Unicode string contains no wide characters, the module accepts it quite happily. The following code illustrates the two cases: .PP .Vb 2 \& $str1 = pack(\*(AqU*\*(Aq, (0..255)); \& print sha1_hex($str1); # ok \& \& $str2 = pack(\*(AqU*\*(Aq, (0..256)); \& print sha1_hex($str2); # croaks .Ve .PP Be aware that the digest routines silently convert \s-1UTF\-8\s0 input into its equivalent byte sequence in the native encoding (cf. utf8::downgrade). This side effect influences only the way Perl stores the data internally, but otherwise leaves the actual value of the data intact. .SH "NIST STATEMENT ON SHA\-1" .IX Header "NIST STATEMENT ON SHA-1" \&\s-1NIST\s0 acknowledges that the work of Prof. Xiaoyun Wang constitutes a practical collision attack on \s-1SHA\-1.\s0 Therefore, \s-1NIST\s0 encourages the rapid adoption of the \s-1SHA\-2\s0 hash functions (e.g. \s-1SHA\-256\s0) for applications requiring strong collision resistance, such as digital signatures. .PP ref. .SH "PADDING OF BASE64 DIGESTS" .IX Header "PADDING OF BASE64 DIGESTS" By convention, \s-1CPAN\s0 Digest modules do \fBnot\fR pad their Base64 output. Problems can occur when feeding such digests to other software that expects properly padded Base64 encodings. .PP For the time being, any necessary padding must be done by the user. Fortunately, this is a simple operation: if the length of a Base64\-encoded digest isn't a multiple of 4, simply append \*(L"=\*(R" characters to the end of the digest until it is: .PP .Vb 3 \& while (length($b64_digest) % 4) { \& $b64_digest .= \*(Aq=\*(Aq; \& } .Ve .PP To illustrate, \fIsha256_base64(\*(L"abc\*(R")\fR is computed to be .PP .Vb 1 \& ungWv48Bz+pBQUDeXa4iI7ADYaOWF3qctBD/YfIAFa0 .Ve .PP which has a length of 43. So, the properly padded version is .PP .Vb 1 \& ungWv48Bz+pBQUDeXa4iI7ADYaOWF3qctBD/YfIAFa0= .Ve .SH "EXPORT" .IX Header "EXPORT" None by default. .SH "EXPORTABLE FUNCTIONS" .IX Header "EXPORTABLE FUNCTIONS" Provided your C compiler supports a 64\-bit type (e.g. the \fIlong long\fR of C99, or \fI_\|_int64\fR used by Microsoft C/\*(C+), all of these functions will be available for use. Otherwise, you won't be able to perform the \s-1SHA\-384\s0 and \s-1SHA\-512\s0 transforms, both of which require 64\-bit operations. .PP \&\fIFunctional style\fR .IP "\fBsha1($data, ...)\fR" 4 .IX Item "sha1($data, ...)" .PD 0 .IP "\fBsha224($data, ...)\fR" 4 .IX Item "sha224($data, ...)" .IP "\fBsha256($data, ...)\fR" 4 .IX Item "sha256($data, ...)" .IP "\fBsha384($data, ...)\fR" 4 .IX Item "sha384($data, ...)" .IP "\fBsha512($data, ...)\fR" 4 .IX Item "sha512($data, ...)" .IP "\fBsha512224($data, ...)\fR" 4 .IX Item "sha512224($data, ...)" .IP "\fBsha512256($data, ...)\fR" 4 .IX Item "sha512256($data, ...)" .PD Logically joins the arguments into a single string, and returns its \s-1SHA\-1/224/256/384/512\s0 digest encoded as a binary string. .IP "\fBsha1_hex($data, ...)\fR" 4 .IX Item "sha1_hex($data, ...)" .PD 0 .IP "\fBsha224_hex($data, ...)\fR" 4 .IX Item "sha224_hex($data, ...)" .IP "\fBsha256_hex($data, ...)\fR" 4 .IX Item "sha256_hex($data, ...)" .IP "\fBsha384_hex($data, ...)\fR" 4 .IX Item "sha384_hex($data, ...)" .IP "\fBsha512_hex($data, ...)\fR" 4 .IX Item "sha512_hex($data, ...)" .IP "\fBsha512224_hex($data, ...)\fR" 4 .IX Item "sha512224_hex($data, ...)" .IP "\fBsha512256_hex($data, ...)\fR" 4 .IX Item "sha512256_hex($data, ...)" .PD Logically joins the arguments into a single string, and returns its \s-1SHA\-1/224/256/384/512\s0 digest encoded as a hexadecimal string. .IP "\fBsha1_base64($data, ...)\fR" 4 .IX Item "sha1_base64($data, ...)" .PD 0 .IP "\fBsha224_base64($data, ...)\fR" 4 .IX Item "sha224_base64($data, ...)" .IP "\fBsha256_base64($data, ...)\fR" 4 .IX Item "sha256_base64($data, ...)" .IP "\fBsha384_base64($data, ...)\fR" 4 .IX Item "sha384_base64($data, ...)" .IP "\fBsha512_base64($data, ...)\fR" 4 .IX Item "sha512_base64($data, ...)" .IP "\fBsha512224_base64($data, ...)\fR" 4 .IX Item "sha512224_base64($data, ...)" .IP "\fBsha512256_base64($data, ...)\fR" 4 .IX Item "sha512256_base64($data, ...)" .PD Logically joins the arguments into a single string, and returns its \s-1SHA\-1/224/256/384/512\s0 digest encoded as a Base64 string. .Sp It's important to note that the resulting string does \fBnot\fR contain the padding characters typical of Base64 encodings. This omission is deliberate, and is done to maintain compatibility with the family of \&\s-1CPAN\s0 Digest modules. See \*(L"\s-1PADDING OF BASE64 DIGESTS\*(R"\s0 for details. .PP \&\fI\s-1OOP\s0 style\fR .IP "\fBnew($alg)\fR" 4 .IX Item "new($alg)" Returns a new Digest::SHA object. Allowed values for \fI\f(CI$alg\fI\fR are 1, 224, 256, 384, 512, 512224, or 512256. It's also possible to use common string representations of the algorithm (e.g. \*(L"sha256\*(R", \&\*(L"\s-1SHA\-384\*(R"\s0). If the argument is missing, \s-1SHA\-1\s0 will be used by default. .Sp Invoking \fInew\fR as an instance method will reset the object to the initial state associated with \fI\f(CI$alg\fI\fR. If the argument is missing, the object will continue using the same algorithm that was selected at creation. .IP "\fBreset($alg)\fR" 4 .IX Item "reset($alg)" This method has exactly the same effect as \fInew($alg)\fR. In fact, \&\fIreset\fR is just an alias for \fInew\fR. .IP "\fBhashsize\fR" 4 .IX Item "hashsize" Returns the number of digest bits for this object. The values are 160, 224, 256, 384, 512, 224, and 256 for \s-1SHA\-1, SHA\-224, SHA\-256, SHA\-384, SHA\-512, SHA\-512/224\s0 and \s-1SHA\-512/256,\s0 respectively. .IP "\fBalgorithm\fR" 4 .IX Item "algorithm" Returns the digest algorithm for this object. The values are 1, 224, 256, 384, 512, 512224, and 512256 for \s-1SHA\-1, SHA\-224, SHA\-256, SHA\-384, SHA\-512, SHA\-512/224,\s0 and \s-1SHA\-512/256,\s0 respectively. .IP "\fBclone\fR" 4 .IX Item "clone" Returns a duplicate copy of the object. .IP "\fBadd($data, ...)\fR" 4 .IX Item "add($data, ...)" Logically joins the arguments into a single string, and uses it to update the current digest state. In other words, the following statements have the same effect: .Sp .Vb 4 \& $sha\->add("a"); $sha\->add("b"); $sha\->add("c"); \& $sha\->add("a")\->add("b")\->add("c"); \& $sha\->add("a", "b", "c"); \& $sha\->add("abc"); .Ve .Sp The return value is the updated object itself. .IP "\fBadd_bits($data, \f(CB$nbits\fB)\fR" 4 .IX Item "add_bits($data, $nbits)" .PD 0 .IP "\fBadd_bits($bits)\fR" 4 .IX Item "add_bits($bits)" .PD Updates the current digest state by appending bits to it. The return value is the updated object itself. .Sp The first form causes the most-significant \fI\f(CI$nbits\fI\fR of \fI\f(CI$data\fI\fR to be appended to the stream. The \fI\f(CI$data\fI\fR argument is in the customary binary format used for Perl strings. .Sp The second form takes an \s-1ASCII\s0 string of \*(L"0\*(R" and \*(L"1\*(R" characters as its argument. It's equivalent to .Sp .Vb 1 \& $sha\->add_bits(pack("B*", $bits), length($bits)); .Ve .Sp So, the following two statements do the same thing: .Sp .Vb 2 \& $sha\->add_bits("111100001010"); \& $sha\->add_bits("\exF0\exA0", 12); .Ve .Sp Note that \s-1SHA\-1\s0 and \s-1SHA\-2\s0 use \fImost-significant-bit ordering\fR for their internal state. This means that .Sp .Vb 1 \& $sha3\->add_bits("110"); .Ve .Sp is equivalent to .Sp .Vb 1 \& $sha3\->add_bits("1")\->add_bits("1")\->add_bits("0"); .Ve .IP "\fBaddfile(*FILE)\fR" 4 .IX Item "addfile(*FILE)" Reads from \fI\s-1FILE\s0\fR until \s-1EOF,\s0 and appends that data to the current state. The return value is the updated object itself. .IP "\fBaddfile($filename [, \f(CB$mode\fB])\fR" 4 .IX Item "addfile($filename [, $mode])" Reads the contents of \fI\f(CI$filename\fI\fR, and appends that data to the current state. The return value is the updated object itself. .Sp By default, \fI\f(CI$filename\fI\fR is simply opened and read; no special modes or I/O disciplines are used. To change this, set the optional \fI\f(CI$mode\fI\fR argument to one of the following values: .Sp .Vb 1 \& "b" read file in binary mode \& \& "U" use universal newlines \& \& "0" use BITS mode .Ve .Sp The \*(L"U\*(R" mode is modeled on Python's \*(L"Universal Newlines\*(R" concept, whereby \&\s-1DOS\s0 and Mac \s-1OS\s0 line terminators are converted internally to \s-1UNIX\s0 newlines before processing. This ensures consistent digest values when working simultaneously across multiple file systems. \fBThe \*(L"U\*(R" mode influences only text files\fR, namely those passing Perl's \fI\-T\fR test; binary files are processed with no translation whatsoever. .Sp The \s-1BITS\s0 mode (\*(L"0\*(R") interprets the contents of \fI\f(CI$filename\fI\fR as a logical stream of bits, where each \s-1ASCII\s0 '0' or '1' character represents a 0 or 1 bit, respectively. All other characters are ignored. This provides a convenient way to calculate the digest values of partial-byte data by using files, rather than having to write separate programs employing the \fIadd_bits\fR method. .IP "\fBgetstate\fR" 4 .IX Item "getstate" Returns a string containing a portable, human-readable representation of the current \s-1SHA\s0 state. .IP "\fBputstate($str)\fR" 4 .IX Item "putstate($str)" Returns a Digest::SHA object representing the \s-1SHA\s0 state contained in \fI\f(CI$str\fI\fR. The format of \fI\f(CI$str\fI\fR matches the format of the output produced by method \fIgetstate\fR. If called as a class method, a new object is created; if called as an instance method, the object is reset to the state contained in \fI\f(CI$str\fI\fR. .IP "\fBdump($filename)\fR" 4 .IX Item "dump($filename)" Writes the output of \fIgetstate\fR to \fI\f(CI$filename\fI\fR. If the argument is missing, or equal to the empty string, the state information will be written to \s-1STDOUT.\s0 .IP "\fBload($filename)\fR" 4 .IX Item "load($filename)" Returns a Digest::SHA object that results from calling \fIputstate\fR on the contents of \fI\f(CI$filename\fI\fR. If the argument is missing, or equal to the empty string, the state information will be read from \s-1STDIN.\s0 .IP "\fBdigest\fR" 4 .IX Item "digest" Returns the digest encoded as a binary string. .Sp Note that the \fIdigest\fR method is a read-once operation. Once it has been performed, the Digest::SHA object is automatically reset in preparation for calculating another digest value. Call \&\fI\f(CI$sha\fI\->clone\->digest\fR if it's necessary to preserve the original digest state. .IP "\fBhexdigest\fR" 4 .IX Item "hexdigest" Returns the digest encoded as a hexadecimal string. .Sp Like \fIdigest\fR, this method is a read-once operation. Call \&\fI\f(CI$sha\fI\->clone\->hexdigest\fR if it's necessary to preserve the original digest state. .IP "\fBb64digest\fR" 4 .IX Item "b64digest" Returns the digest encoded as a Base64 string. .Sp Like \fIdigest\fR, this method is a read-once operation. Call \&\fI\f(CI$sha\fI\->clone\->b64digest\fR if it's necessary to preserve the original digest state. .Sp It's important to note that the resulting string does \fBnot\fR contain the padding characters typical of Base64 encodings. This omission is deliberate, and is done to maintain compatibility with the family of \&\s-1CPAN\s0 Digest modules. See \*(L"\s-1PADDING OF BASE64 DIGESTS\*(R"\s0 for details. .PP \&\fI\s-1HMAC\-SHA\-1/224/256/384/512\s0\fR .IP "\fBhmac_sha1($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha1($data, $key)" .PD 0 .IP "\fBhmac_sha224($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha224($data, $key)" .IP "\fBhmac_sha256($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha256($data, $key)" .IP "\fBhmac_sha384($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha384($data, $key)" .IP "\fBhmac_sha512($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha512($data, $key)" .IP "\fBhmac_sha512224($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha512224($data, $key)" .IP "\fBhmac_sha512256($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha512256($data, $key)" .PD Returns the \s-1HMAC\-SHA\-1/224/256/384/512\s0 digest of \fI\f(CI$data\fI\fR/\fI\f(CI$key\fI\fR, with the result encoded as a binary string. Multiple \fI\f(CI$data\fI\fR arguments are allowed, provided that \fI\f(CI$key\fI\fR is the last argument in the list. .IP "\fBhmac_sha1_hex($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha1_hex($data, $key)" .PD 0 .IP "\fBhmac_sha224_hex($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha224_hex($data, $key)" .IP "\fBhmac_sha256_hex($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha256_hex($data, $key)" .IP "\fBhmac_sha384_hex($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha384_hex($data, $key)" .IP "\fBhmac_sha512_hex($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha512_hex($data, $key)" .IP "\fBhmac_sha512224_hex($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha512224_hex($data, $key)" .IP "\fBhmac_sha512256_hex($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha512256_hex($data, $key)" .PD Returns the \s-1HMAC\-SHA\-1/224/256/384/512\s0 digest of \fI\f(CI$data\fI\fR/\fI\f(CI$key\fI\fR, with the result encoded as a hexadecimal string. Multiple \fI\f(CI$data\fI\fR arguments are allowed, provided that \fI\f(CI$key\fI\fR is the last argument in the list. .IP "\fBhmac_sha1_base64($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha1_base64($data, $key)" .PD 0 .IP "\fBhmac_sha224_base64($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha224_base64($data, $key)" .IP "\fBhmac_sha256_base64($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha256_base64($data, $key)" .IP "\fBhmac_sha384_base64($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha384_base64($data, $key)" .IP "\fBhmac_sha512_base64($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha512_base64($data, $key)" .IP "\fBhmac_sha512224_base64($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha512224_base64($data, $key)" .IP "\fBhmac_sha512256_base64($data, \f(CB$key\fB)\fR" 4 .IX Item "hmac_sha512256_base64($data, $key)" .PD Returns the \s-1HMAC\-SHA\-1/224/256/384/512\s0 digest of \fI\f(CI$data\fI\fR/\fI\f(CI$key\fI\fR, with the result encoded as a Base64 string. Multiple \fI\f(CI$data\fI\fR arguments are allowed, provided that \fI\f(CI$key\fI\fR is the last argument in the list. .Sp It's important to note that the resulting string does \fBnot\fR contain the padding characters typical of Base64 encodings. This omission is deliberate, and is done to maintain compatibility with the family of \&\s-1CPAN\s0 Digest modules. See \*(L"\s-1PADDING OF BASE64 DIGESTS\*(R"\s0 for details. .SH "SEE ALSO" .IX Header "SEE ALSO" Digest, Digest::SHA::PurePerl .PP The Secure Hash Standard (Draft \s-1FIPS PUB 180\-4\s0) can be found at: .PP .PP The Keyed-Hash Message Authentication Code (\s-1HMAC\s0): .PP .SH "AUTHOR" .IX Header "AUTHOR" .Vb 1 \& Mark Shelor .Ve .SH "ACKNOWLEDGMENTS" .IX Header "ACKNOWLEDGMENTS" The author is particularly grateful to .PP .Vb 10 \& Gisle Aas \& H. Merijn Brand \& Sean Burke \& Chris Carey \& Alexandr Ciornii \& Chris David \& Jim Doble \& Thomas Drugeon \& Julius Duque \& Jeffrey Friedl \& Robert Gilmour \& Brian Gladman \& Jarkko Hietaniemi \& Adam Kennedy \& Mark Lawrence \& Andy Lester \& Alex Muntada \& Steve Peters \& Chris Skiscim \& Martin Thurn \& Gunnar Wolf \& Adam Woodbury .Ve .PP \&\*(L"who by trained skill rescued life from such great billows and such thick darkness and moored it in so perfect a calm and in so brilliant a light\*(R" \&\- Lucretius .SH "COPYRIGHT AND LICENSE" .IX Header "COPYRIGHT AND LICENSE" Copyright (C) 2003\-2018 Mark Shelor .PP This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself. .PP perlartistic