.TH v.kernel 1grass "" "GRASS 7.8.5" "GRASS GIS User's Manual" .SH NAME \fI\fBv.kernel\fR\fR \- Generates a raster density map from vector points map. .br Density is computed using a moving kernel. Optionally generates a vector density map on a vector network. .SH KEYWORDS vector, kernel density, point density, heatmap, hotspot .SH SYNOPSIS \fBv.kernel\fR .br \fBv.kernel \-\-help\fR .br \fBv.kernel\fR [\-\fBoqnm\fR] \fBinput\fR=\fIname\fR [\fBnet\fR=\fIname\fR] [\fBoutput\fR=\fIname\fR] [\fBnet_output\fR=\fIname\fR] \fBradius\fR=\fIfloat\fR [\fBdsize\fR=\fIfloat\fR] [\fBsegmax\fR=\fIfloat\fR] [\fBdistmax\fR=\fIfloat\fR] [\fBmultiplier\fR=\fIfloat\fR] [\fBnode\fR=\fIstring\fR] [\fBkernel\fR=\fIstring\fR] [\-\-\fBoverwrite\fR] [\-\-\fBhelp\fR] [\-\-\fBverbose\fR] [\-\-\fBquiet\fR] [\-\-\fBui\fR] .SS Flags: .IP "\fB\-o\fR" 4m .br Try to calculate an optimal radius with given \(cqradius\(cq taken as maximum (experimental) .IP "\fB\-q\fR" 4m .br Only calculate optimal radius and exit (no map is written) .IP "\fB\-n\fR" 4m .br In network mode, normalize values by sum of density multiplied by length of each segment. Integral over the output map then gives 1.0 * multiplier .IP "\fB\-m\fR" 4m .br In network mode, multiply the result by number of input points .IP "\fB\-\-overwrite\fR" 4m .br Allow output files to overwrite existing files .IP "\fB\-\-help\fR" 4m .br Print usage summary .IP "\fB\-\-verbose\fR" 4m .br Verbose module output .IP "\fB\-\-quiet\fR" 4m .br Quiet module output .IP "\fB\-\-ui\fR" 4m .br Force launching GUI dialog .SS Parameters: .IP "\fBinput\fR=\fIname\fR \fB[required]\fR" 4m .br Name of input vector map with training points .IP "\fBnet\fR=\fIname\fR" 4m .br Name of input network vector map .IP "\fBoutput\fR=\fIname\fR" 4m .br Name for output raster map .IP "\fBnet_output\fR=\fIname\fR" 4m .br Name for output vector density map .br Outputs vector map if network map is given .IP "\fBradius\fR=\fIfloat\fR \fB[required]\fR" 4m .br Kernel radius in map units .IP "\fBdsize\fR=\fIfloat\fR" 4m .br Discretization error in map units .br Default: \fI0.\fR .IP "\fBsegmax\fR=\fIfloat\fR" 4m .br Maximum length of segment on network .br Default: \fI100.\fR .IP "\fBdistmax\fR=\fIfloat\fR" 4m .br Maximum distance from point to network .br Default: \fI100.\fR .IP "\fBmultiplier\fR=\fIfloat\fR" 4m .br Multiply the density result by this number .br Default: \fI1.\fR .IP "\fBnode\fR=\fIstring\fR" 4m .br Node method .br Options: \fInone, split\fR .br Default: \fInone\fR .br \fBnone\fR: No method applied at nodes with more than 2 arcs .br \fBsplit\fR: Equal split (Okabe 2009) applied at nodes .IP "\fBkernel\fR=\fIstring\fR" 4m .br Kernel function .br Options: \fIuniform, triangular, epanechnikov, quartic, triweight, gaussian, cosine\fR .br Default: \fIgaussian\fR .SH DESCRIPTION \fIv.kernel\fR generates a raster density map from vector points data using a moving kernel. Available kernel density functions are \fIuniform, triangular, epanechnikov, quartic, triweight, gaussian, cosine\fR, default is \fIgaussian\fR. .PP The module can also generate a vector density map on a vector network. Conventional kernel functions produce biased estimates by overestimating the densities around network nodes, whereas the equal split method of Okabe et al. (2009) produces unbiased density estimates. The equal split method uses the kernel function selected with the \fBkernel\fR option and can be enabled with \fBnode=split\fR. .SH NOTES The \fBmultiplier\fR option is needed to overcome the limitation that the resulting density in case of a vector map output is stored as category (integer). The density result stored as category may be multiplied by this number. .PP For the \fIgaussian\fR kernel, standard deviation for the gaussian function is set to 1/4 of the radius. .PP With the \fB\-o\fR flag (experimental) the command tries to calculate an optimal radius. The value of \fIradius\fR is taken as maximum value. The radius is calculated based on the gaussian function, using ALL points, not just those in the current region. .SH EXAMPLES Compute density of points (using vector map of schools from North Carolina sample dataset): .br .nf \fC g.region region=wake_30m v.kernel input=schools_wake output=schools_density radius=5000 multiplier=1000000 r.colors map=schools_density color=bcyr \fR .fi .br School density .SH KNOWN ISSUES The module only considers the presence of points, but not (yet) any attribute values. .SH REFERENCES .RS 4n .IP \(bu 4n Okabe, A., Satoh, T., Sugihara, K. (2009). \fIA kernel density estimation method for networks, its computational method and a GIS\-based tool\fR. \fBInternational Journal of Geographical Information Science\fR, Vol 23(1), pp. 7\-32. .br DOI: 10.1080/13658810802475491 .RE .SH SEE ALSO \fIv.surf.rst\fR .PP Overview: Interpolation and Resampling in GRASS GIS .SH AUTHORS Stefano Menegon, ITC\-irst, Trento, Italy .br Radim Blazek (additional kernel density functions and network part) .SH SOURCE CODE .PP Available at: v.kernel source code (history) .PP Main index | Vector index | Topics index | Keywords index | Graphical index | Full index .PP © 2003\-2020 GRASS Development Team, GRASS GIS 7.8.5 Reference Manual