.TH r.slope.aspect 1grass "" "GRASS 7.8.5" "GRASS GIS User's Manual" .SH NAME \fI\fBr.slope.aspect\fR\fR \- Generates raster maps of slope, aspect, curvatures and partial derivatives from an elevation raster map. .br Aspect is calculated counterclockwise from east. .SH KEYWORDS raster, terrain, aspect, slope, curvature .SH SYNOPSIS \fBr.slope.aspect\fR .br \fBr.slope.aspect \-\-help\fR .br \fBr.slope.aspect\fR [\-\fBaen\fR] \fBelevation\fR=\fIname\fR [\fBslope\fR=\fIname\fR] [\fBaspect\fR=\fIname\fR] [\fBformat\fR=\fIstring\fR] [\fBprecision\fR=\fIstring\fR] [\fBpcurvature\fR=\fIname\fR] [\fBtcurvature\fR=\fIname\fR] [\fBdx\fR=\fIname\fR] [\fBdy\fR=\fIname\fR] [\fBdxx\fR=\fIname\fR] [\fBdyy\fR=\fIname\fR] [\fBdxy\fR=\fIname\fR] [\fBzscale\fR=\fIfloat\fR] [\fBmin_slope\fR=\fIfloat\fR] [\-\-\fBoverwrite\fR] [\-\-\fBhelp\fR] [\-\-\fBverbose\fR] [\-\-\fBquiet\fR] [\-\-\fBui\fR] .SS Flags: .IP "\fB\-a\fR" 4m .br Do not align the current region to the raster elevation map .IP "\fB\-e\fR" 4m .br Compute output at edges and near NULL values .IP "\fB\-n\fR" 4m .br Create aspect as degrees clockwise from North (azimuth), with flat = \-9999 .br Default: degrees counter\-clockwise from East, with flat = 0 .IP "\fB\-\-overwrite\fR" 4m .br Allow output files to overwrite existing files .IP "\fB\-\-help\fR" 4m .br Print usage summary .IP "\fB\-\-verbose\fR" 4m .br Verbose module output .IP "\fB\-\-quiet\fR" 4m .br Quiet module output .IP "\fB\-\-ui\fR" 4m .br Force launching GUI dialog .SS Parameters: .IP "\fBelevation\fR=\fIname\fR \fB[required]\fR" 4m .br Name of input elevation raster map .IP "\fBslope\fR=\fIname\fR" 4m .br Name for output slope raster map .IP "\fBaspect\fR=\fIname\fR" 4m .br Name for output aspect raster map .IP "\fBformat\fR=\fIstring\fR" 4m .br Format for reporting the slope .br Options: \fIdegrees, percent\fR .br Default: \fIdegrees\fR .IP "\fBprecision\fR=\fIstring\fR" 4m .br Type of output aspect and slope maps .br Storage type for resultant raster map .br Options: \fICELL, FCELL, DCELL\fR .br Default: \fIFCELL\fR .br \fBCELL\fR: Integer .br \fBFCELL\fR: Single precision floating point .br \fBDCELL\fR: Double precision floating point .IP "\fBpcurvature\fR=\fIname\fR" 4m .br Name for output profile curvature raster map .IP "\fBtcurvature\fR=\fIname\fR" 4m .br Name for output tangential curvature raster map .IP "\fBdx\fR=\fIname\fR" 4m .br Name for output first order partial derivative dx (E\-W slope) raster map .IP "\fBdy\fR=\fIname\fR" 4m .br Name for output first order partial derivative dy (N\-S slope) raster map .IP "\fBdxx\fR=\fIname\fR" 4m .br Name for output second order partial derivative dxx raster map .IP "\fBdyy\fR=\fIname\fR" 4m .br Name for output second order partial derivative dyy raster map .IP "\fBdxy\fR=\fIname\fR" 4m .br Name for output second order partial derivative dxy raster map .IP "\fBzscale\fR=\fIfloat\fR" 4m .br Multiplicative factor to convert elevation units to horizontal units .br Default: \fI1.0\fR .IP "\fBmin_slope\fR=\fIfloat\fR" 4m .br Minimum slope value (in percent) for which aspect is computed .br Default: \fI0.0\fR .SH DESCRIPTION \fIr.slope.aspect\fR generates raster maps of slope, aspect, curvatures and first and second order partial derivatives from a raster map of true elevation values. The user must specify the input \fBelevation\fR raster map and at least one output raster maps. The user can also specify the \fBformat\fR for slope (degrees, percent; default=degrees), and the \fBzscale\fR: multiplicative factor to convert elevation units to horizontal units; (default 1.0). .PP The \fBelevation\fR input raster map specified by the user must contain true elevation values, \fInot\fR rescaled or categorized data. If the elevation values are in other units than in the horizontal units, they must be converted to horizontal units using the parameter \fBzscale\fR. \fIIn GRASS GIS 7, vertical units are not assumed to be meters any more. For example, if both your vertical and horizontal units are feet, parameter \fBzscale\fR must not be used\fR. .PP The \fBaspect\fR output raster map indicates the direction that slopes are facing counterclockwise from East: 90 degrees is North, 180 is West, 270 is South, 360 is East. Zero aspect indicates flat areas with zero slope. Category and color table files are also generated for the aspect raster map. .br Note: These values can be transformed to azimuth values (90 is East, 180 is South, 270 is West, 360 is North) using r.mapcalc: .br .nf \fC # convert angles from CCW from East to CW from North # modulus (%) can not be used with floating point aspect values r.mapcalc \(dqazimuth_aspect = if(ccw_aspect == 0, 0, \(rs if(ccw_aspect < 90, 90 \- ccw_aspect, \(rs 450 \- ccw_aspect)))\(dq \fR .fi Alternatively, the \fB\-n\fR flag can be used to produce aspect as degrees CW from North. Aspect for flat areas is then set to \-9999 (default: 0). Note: The reason for using \-9999 is to be compliant with \fBgdaldem\fR which uses \-9999 by default as the nodata value. .PP The aspect for slope equal to zero (flat areas) is set to zero (\-9999 with \fB\-n\fR flag). Thus, most cells with a very small slope end up having category 0, 45, ..., 360 in \fBaspect\fR output. It is possible to reduce the bias in these directions by filtering out the aspect in areas where the terrain is almost flat. A option \fBmin_slope\fR can be used to specify the minimum slope for which aspect is computed. For all cells with slope < \fBmin_slope\fR, both slope and aspect are set to zero. .PP The \fBslope\fR output raster map contains slope values, stated in degrees of inclination from the horizontal if \fBformat\fR=degrees option (the default) is chosen, and in percent rise if \fBformat\fR=percent option is chosen. Category and color table files are generated. .PP Profile and tangential curvatures are the curvatures in the direction of steepest slope and in the direction of the contour tangent respectively. The curvatures are expressed as 1/metres, e.g. a curvature of 0.05 corresponds to a radius of curvature of 20m. Convex form values are positive and concave form values are negative. .PP .TS expand; lw60 lw1 lw60 lw1 lw60. T{ Example DEM T} T{ T} .sp 1 T{ Slope (degree) from example DEM T} T{ Aspect (degree) from example DEM T} .sp 1 T{ Tangential curvature (m\u\-1\d) from example DEM T} T{ Profile curvature (m\u\-1\d) from example DEM T} T{ T} .sp 1 .TE .PP For some applications, the user will wish to use a reclassified raster map of slope that groups slope values into ranges of slope. This can be done using \fIr.reclass\fR. An example of a useful reclassification is given below: .br .nf \fC category range category labels (in degrees) (in percent) 1 0\- 1 0\- 2% 2 2\- 3 3\- 5% 3 4\- 5 6\- 10% 4 6\- 8 11\- 15% 5 9\- 11 16\- 20% 6 12\- 14 21\- 25% 7 15\- 90 26% and higher The following color table works well with the above reclassification. category red green blue 0 179 179 179 1 0 102 0 2 0 153 0 3 128 153 0 4 204 179 0 5 128 51 51 6 255 0 0 7 0 0 0 \fR .fi .SH NOTES To ensure that the raster elevation map is not inappropriately resampled, the settings for the current region are modified slightly (for the execution of the program only): the resolution is set to match the resolution of the elevation raster map and the edges of the region (i.e. the north, south, east and west) are shifted, if necessary, to line up along edges of the nearest cells in the elevation map. If the user really wants the raster elevation map resampled to the current region resolution, the \fB\-a\fR flag should be specified. .PP The current mask is ignored. .PP The algorithm used to determine slope and aspect uses a 3x3 neighborhood around each cell in the raster elevation map. Thus, slope and aspect are not determineed for cells adjacent to the edges and NULL cells in the elevation map layer. These cells are by default set to nodata in output raster maps. With the \fB\-e\fR flag, output values are estimated for these cells, avoiding cropping along the edges. .PP Horn\(cqs formula is used to find the first order derivatives in x and y directions. .PP Only when using integer elevation models, the aspect is biased in 0, 45, 90, 180, 225, 270, 315, and 360 directions; i.e., the distribution of aspect categories is very uneven, with peaks at 0, 45,..., 360 categories. When working with floating point elevation models, no such aspect bias occurs. .SH EXAMPLES .SS Calculation of slope, aspect, profile and tangential curvature In this example a slope, aspect, profile and tangential curvature map are computed from an elevation raster map (North Carolina sample dataset): .br .nf \fC g.region raster=elevation r.slope.aspect elevation=elevation slope=slope aspect=aspect pcurvature=pcurv tcurvature=tcurv # set nice color tables for output raster maps r.colors \-n map=slope color=sepia r.colors map=aspect color=aspectcolr r.colors map=pcurv color=curvature r.colors map=tcurv color=curvature \fR .fi .PP Figure: Slope, aspect, profile and tangential curvature raster map (North Carolina dataset) .SS Classification of major aspect directions in compass orientation In the following example (based on the North Carolina sample dataset) we first generate the standard aspect map (oriented CCW from East), then convert it to compass orientation, and finally classify four major aspect directions (N, E, S, W): .br .nf \fC g.region raster=elevation \-p # generate integer aspect map with degrees CCW from East r.slope.aspect elevation=elevation aspect=myaspect precision=CELL # generate compass orientation and classify four major directions (N, E, S, W) r.mapcalc \(dqaspect_4_directions = eval( \(rs\(rs compass=(450 \- myaspect ) % 360, \(rs\(rs if(compass >=0. && compass < 45., 1) \(rs\(rs + if(compass >=45. && compass < 135., 2) \(rs\(rs + if(compass >=135. && compass < 225., 3) \(rs\(rs + if(compass >=225. && compass < 315., 4) \(rs\(rs + if(compass >=315., 1) \(rs\(rs )\(dq # assign text labels r.category aspect_4_directions separator=comma rules=\- << EOF 1,north 2,east 3,south 4,west EOF # assign color table r.colors aspect_4_directions rules=\- << EOF 1 253,184,99 2 178,171,210 3 230,97,1 4 94,60,153 EOF \fR .fi .br Aspect map classified to four major compass directions (zoomed subset shown) .SH REFERENCES .RS 4n .IP \(bu 4n Horn, B. K. P. (1981). \fIHill Shading and the Reflectance Map\fR, Proceedings of the IEEE, 69(1):14\-47. .IP \(bu 4n Mitasova, H. (1985). \fICartographic aspects of computer surface modeling. PhD thesis.\fR Slovak Technical University , Bratislava .IP \(bu 4n Hofierka, J., Mitasova, H., Neteler, M., 2009. \fIGeomorphometry in GRASS GIS.\fR In: Hengl, T. and Reuter, H.I. (Eds), \fIGeomorphometry: Concepts, Software, Applications. \fR Developments in Soil Science, vol. 33, Elsevier, 387\-410 pp, http://www.geomorphometry.org .RE .SH SEE ALSO \fI r.mapcalc, r.neighbors, r.reclass, r.rescale \fR .SH AUTHORS Michael Shapiro, U.S.Army Construction Engineering Research Laboratory .br Olga Waupotitsch, U.S.Army Construction Engineering Research Laboratory .SH SOURCE CODE .PP Available at: r.slope.aspect source code (history) .PP Main index | Raster index | Topics index | Keywords index | Graphical index | Full index .PP © 2003\-2020 GRASS Development Team, GRASS GIS 7.8.5 Reference Manual