.\" Automatically generated by Pod::Man 4.12 (Pod::Simple 3.39) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "GEOCONVERT 1" .TH GEOCONVERT 1 "2020-11-22" "GeographicLib 1.51" "GeographicLib Utilities" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" GeoConvert \-\- convert geographic coordinates .SH "SYNOPSIS" .IX Header "SYNOPSIS" \&\fBGeoConvert\fR [ \fB\-g\fR | \fB\-d\fR | \fB\-:\fR | \fB\-u\fR | \fB\-m\fR | \fB\-c\fR ] [ \fB\-z\fR \fIzone\fR | \fB\-s\fR | \fB\-t\fR | \fB\-S\fR | \fB\-T\fR ] [ \fB\-n\fR ] [ \fB\-w\fR ] [ \fB\-p\fR \fIprec\fR ] [ \fB\-l\fR | \fB\-a\fR ] [ \fB\-\-comment\-delimiter\fR \fIcommentdelim\fR ] [ \fB\-\-version\fR | \fB\-h\fR | \fB\-\-help\fR ] [ \fB\-\-input\-file\fR \fIinfile\fR | \fB\-\-input\-string\fR \fIinstring\fR ] [ \fB\-\-line\-separator\fR \fIlinesep\fR ] [ \fB\-\-output\-file\fR \fIoutfile\fR ] .SH "DESCRIPTION" .IX Header "DESCRIPTION" \&\fBGeoConvert\fR reads from standard input interpreting each line as a geographic coordinate and prints the coordinate in the format specified by the options on standard output. The input is interpreted in one of three different ways depending on how many space or comma delimited tokens there are on the line. The options \fB\-g\fR, \fB\-d\fR, \fB\-u\fR, and \fB\-m\fR govern the format of output. In all cases, the \s-1WGS84\s0 model of the earth is used (\fIa\fR = 6378137 m, \fIf\fR = 1/298.257223563). .IP "\fBgeographic\fR" 4 .IX Item "geographic" 2 tokens (output options \fB\-g\fR, \fB\-d\fR, or \fB\-:\fR) given as \fIlatitude\fR \&\fIlongitude\fR using decimal degrees or degrees, minutes, and seconds. Latitude is given first (unless the \fB\-w\fR option is given). See \&\*(L"\s-1GEOGRAPHIC COORDINATES\*(R"\s0 for a description of the format. For example, the following are all equivalent .Sp .Vb 5 \& 33.3 44.4 \& E44.4 N33.3 \& 33d18\*(AqN 44d24\*(AqE \& 44d24 33d18N \& 33:18 +44:24 .Ve .IP "\fB\s-1UTM/UPS\s0\fR" 4 .IX Item "UTM/UPS" 3 tokens (output option \fB\-u\fR) given as \fIzone\fR+\fIhemisphere\fR \fIeasting\fR \&\fInorthing\fR or \fIeasting\fR \fInorthing\fR \fIzone\fR+\fIhemisphere\fR, where \&\fIhemisphere\fR is either \fIn\fR (or \fInorth\fR) or \fIs\fR (or \fIsouth\fR). The \&\fIzone\fR is absent for a \s-1UPS\s0 specification. For example, .Sp .Vb 4 \& 38n 444140.54 3684706.36 \& 444140.54 3684706.36 38n \& s 2173854.98 2985980.58 \& 2173854.98 2985980.58 s .Ve .IP "\fB\s-1MRGS\s0\fR" 4 .IX Item "MRGS" 1 token (output option \fB\-m\fR) is used to specify the center of an \s-1MGRS\s0 grid square. For example, .Sp .Vb 2 \& 38SMB4484 \& 38SMB44140847064 .Ve .SH "OPTIONS" .IX Header "OPTIONS" .IP "\fB\-g\fR" 4 .IX Item "-g" output latitude and longitude using decimal degrees. Default output mode. .IP "\fB\-d\fR" 4 .IX Item "-d" output latitude and longitude using degrees, minutes, and seconds (\s-1DMS\s0). .IP "\fB\-:\fR" 4 .IX Item "-:" like \fB\-d\fR, except use : as a separator instead of the d, ', and " delimiters. .IP "\fB\-u\fR" 4 .IX Item "-u" output \s-1UTM\s0 or \s-1UPS.\s0 .IP "\fB\-m\fR" 4 .IX Item "-m" output \s-1MGRS.\s0 .IP "\fB\-c\fR" 4 .IX Item "-c" output meridian convergence and scale for the corresponding \s-1UTM\s0 or \s-1UPS\s0 projection. The meridian convergence is the bearing of grid north given as degrees clockwise from true north. .IP "\fB\-z\fR \fIzone\fR" 4 .IX Item "-z zone" set the zone to \fIzone\fR for output. Use either 0 < \fIzone\fR <= 60 for a \s-1UTM\s0 zone or \fIzone\fR = 0 for \s-1UPS.\s0 Alternatively use a \&\fIzone\fR+\fIhemisphere\fR designation, e.g., 38n. See \*(L"\s-1ZONE\*(R"\s0. .IP "\fB\-s\fR" 4 .IX Item "-s" use the standard \s-1UPS\s0 and \s-1UTM\s0 zones. .IP "\fB\-t\fR" 4 .IX Item "-t" similar to \fB\-s\fR but forces \s-1UPS\s0 regions to the closest \s-1UTM\s0 zone. .IP "\fB\-S\fR or \fB\-T\fR" 4 .IX Item "-S or -T" behave the same as \fB\-s\fR and \fB\-t\fR, respectively, until the first legal conversion is performed. For subsequent points, the zone and hemisphere of that conversion are used. This enables a sequence of points to be converted into \s-1UTM\s0 or \s-1UPS\s0 using a consistent coordinate system. .IP "\fB\-n\fR" 4 .IX Item "-n" on input, \s-1MGRS\s0 coordinates refer to the south-west corner of the \s-1MGRS\s0 square instead of the center; see \*(L"\s-1MGRS\*(R"\s0. .IP "\fB\-w\fR" 4 .IX Item "-w" toggle the longitude first flag (it starts off); if the flag is on, then on input and output, longitude precedes latitude (except that, on input, this can be overridden by a hemisphere designator, \fIN\fR, \fIS\fR, \fIE\fR, \&\fIW\fR). .IP "\fB\-p\fR \fIprec\fR" 4 .IX Item "-p prec" set the output precision to \fIprec\fR (default 0); \fIprec\fR is the precision relative to 1 m. See \*(L"\s-1PRECISION\*(R"\s0. .IP "\fB\-l\fR" 4 .IX Item "-l" on output, \s-1UTM/UPS\s0 uses the long forms \fInorth\fR and \fIsouth\fR to designate the hemisphere instead of \fIn\fR or \fIs\fR. .IP "\fB\-a\fR" 4 .IX Item "-a" on output, \s-1UTM/UPS\s0 uses the abbreviations \fIn\fR and \fIs\fR to designate the hemisphere instead of \fInorth\fR or \fIsouth\fR; this is the default representation. .IP "\fB\-\-comment\-delimiter\fR \fIcommentdelim\fR" 4 .IX Item "--comment-delimiter commentdelim" set the comment delimiter to \fIcommentdelim\fR (e.g., \*(L"#\*(R" or \*(L"//\*(R"). If set, the input lines will be scanned for this delimiter and, if found, the delimiter and the rest of the line will be removed prior to processing and subsequently appended to the output line (separated by a space). .IP "\fB\-\-version\fR" 4 .IX Item "--version" print version and exit. .IP "\fB\-h\fR" 4 .IX Item "-h" print usage and exit. .IP "\fB\-\-help\fR" 4 .IX Item "--help" print full documentation and exit. .IP "\fB\-\-input\-file\fR \fIinfile\fR" 4 .IX Item "--input-file infile" read input from the file \fIinfile\fR instead of from standard input; a file name of \*(L"\-\*(R" stands for standard input. .IP "\fB\-\-input\-string\fR \fIinstring\fR" 4 .IX Item "--input-string instring" read input from the string \fIinstring\fR instead of from standard input. All occurrences of the line separator character (default is a semicolon) in \fIinstring\fR are converted to newlines before the reading begins. .IP "\fB\-\-line\-separator\fR \fIlinesep\fR" 4 .IX Item "--line-separator linesep" set the line separator character to \fIlinesep\fR. By default this is a semicolon. .IP "\fB\-\-output\-file\fR \fIoutfile\fR" 4 .IX Item "--output-file outfile" write output to the file \fIoutfile\fR instead of to standard output; a file name of \*(L"\-\*(R" stands for standard output. .SH "PRECISION" .IX Header "PRECISION" \&\fIprec\fR gives precision of the output with \fIprec\fR = 0 giving 1 m precision, \fIprec\fR = 3 giving 1 mm precision, etc. \fIprec\fR is the number of digits after the decimal point for \s-1UTM/UPS.\s0 For \s-1MGRS,\s0 The number of digits per coordinate is 5 + \fIprec\fR; \fIprec\fR = \-6 results in just the grid zone. For decimal degrees, the number of digits after the decimal point is 5 + \fIprec\fR. For \s-1DMS\s0 (degree, minute, seconds) output, the number of digits after the decimal point in the seconds components is 1 + \fIprec\fR; if this is negative then use minutes (\fIprec\fR = \-2 or \&\-3) or degrees (\fIprec\fR <= \-4) as the least significant component. Print convergence, resp. scale, with 5 + \fIprec\fR, resp. 7 + \fIprec\fR, digits after the decimal point. The minimum value of \fIprec\fR is \-5 (\-6 for \s-1MGRS\s0) and the maximum is 9 for \s-1UTM/UPS, 9\s0 for decimal degrees, 10 for \s-1DMS, 6\s0 for \s-1MGRS,\s0 and 8 for convergence and scale. .SH "GEOGRAPHIC COORDINATES" .IX Header "GEOGRAPHIC COORDINATES" The utility accepts geographic coordinates, latitude and longitude, in a number of common formats. Latitude precedes longitude, unless the \fB\-w\fR option is given which switches this convention. On input, either coordinate may be given first by appending or prepending \fIN\fR or \fIS\fR to the latitude and \fIE\fR or \fIW\fR to the longitude. These hemisphere designators carry an implied sign, positive for \fIN\fR and \fIE\fR and negative for \fIS\fR and \fIW\fR. This sign multiplies any +/\- sign prefixing the coordinate. The coordinates may be given as decimal degree or as degrees, minutes, and seconds. d, ', and " are used to denote degrees, minutes, and seconds, with the least significant designator optional. (See \*(L"\s-1QUOTING\*(R"\s0 for how to quote the characters ' and " when entering coordinates on the command line.) Alternatively, : (colon) may be used to separate the various components. Only the final component of coordinate can include a decimal point, and the minutes and seconds components must be less than 60. .PP It is also possible to carry out addition or subtraction operations in geographic coordinates. If the coordinate includes interior signs (i.e., not at the beginning or immediately after an initial hemisphere designator), then the coordinate is split before such signs; the pieces are parsed separately and the results summed. For example the point 15" east of 39N 70W is .PP .Vb 1 \& 39N 70W+0:0:15E .Ve .PP \&\fB\s-1WARNING:\s0\fR \*(L"Exponential\*(R" notation is not recognized for geographic coordinates. Thus 7.0E1 is illegal, while 7.0E+1 is parsed as (7.0E) + (+1), yielding the same result as 8.0E. .PP Various unicode characters (encoded with \s-1UTF\-8\s0) may also be used to denote degrees, minutes, and seconds, e.g., the degree, prime, and double prime symbols; in addition two single quotes can be used to represent ". .PP The other GeographicLib utilities use the same rules for interpreting geographic coordinates; in addition, azimuths and arc lengths are interpreted the same way. .SH "QUOTING" .IX Header "QUOTING" Unfortunately the characters ' and \*(L" have special meanings in many shells and have to be entered with care. However note (1) that the trailing designator is optional and that (2) you can use colons as a separator character. Thus 10d20' can be entered as 10d20 or 10:20 and 10d20'30\*(R" can be entered as 10:20:30. .IP "Unix shells (sh, bash, tsch)" 4 .IX Item "Unix shells (sh, bash, tsch)" The characters ' and \*(L" can be quoted by preceding them with a \e (backslash); or you can quote a string containing ' with a pair of \*(R"s. The two alternatives are illustrated by .Sp .Vb 2 \& echo 10d20\e\*(Aq30\e" "20d30\*(Aq40" | GeoConvert \-d \-p \-1 \& => 10d20\*(Aq30"N 020d30\*(Aq40"E .Ve .Sp Quoting of command line arguments is similar .Sp .Vb 2 \& GeoConvert \-d \-p \-1 \-\-input\-string "10d20\*(Aq30\e" 20d30\*(Aq40" \& => 10d20\*(Aq30"N 020d30\*(Aq40"E .Ve .IP "Windows command shell (cmd)" 4 .IX Item "Windows command shell (cmd)" The ' character needs no quoting; the " character can either be quoted by a ^ or can be represented by typing ' twice. (This quoting is usually unnecessary because the trailing designator can be omitted.) Thus .Sp .Vb 2 \& echo 10d20\*(Aq30\*(Aq\*(Aq 20d30\*(Aq40 | GeoConvert \-d \-p \-1 \& => 10d20\*(Aq30"N 020d30\*(Aq40"E .Ve .Sp Use \e to quote the " character in a command line argument .Sp .Vb 2 \& GeoConvert \-d \-p \-1 \-\-input\-string "10d20\*(Aq30\e" 20d30\*(Aq40" \& => 10d20\*(Aq30"N 020d30\*(Aq40"E .Ve .IP "Input from a file" 4 .IX Item "Input from a file" No quoting need be done if the input from a file. Thus each line of the file \f(CW\*(C`input.txt\*(C'\fR should just contain the plain coordinates. .Sp .Vb 1 \& GeoConvert \-d \-p \-1 < input.txt .Ve .SH "MGRS" .IX Header "MGRS" \&\s-1MGRS\s0 coordinates represent a square patch of the earth, thus \&\f(CW\*(C`38SMB4488\*(C'\fR is in zone \f(CW\*(C`38n\*(C'\fR with 444km <= \fIeasting\fR < 445km and 3688km <= \fInorthing\fR < 3689km. Consistent with this representation, coordinates are \fItruncated\fR (instead of \&\fIrounded\fR) to the requested precision. When an \s-1MGRS\s0 coordinate is provided as input, \fBGeoConvert\fR treats this as a representative point within the square. By default, this representative point is the \&\fIcenter\fR of the square (\f(CW\*(C`38n 444500 3688500\*(C'\fR in the example above). (This leads to a stable conversion between \s-1MGRS\s0 and geographic coordinates.) However, if the \fB\-n\fR option is given then the south-west corner of the square is returned instead (\f(CW\*(C`38n 444000 3688000\*(C'\fR in the example above). .SH "ZONE" .IX Header "ZONE" If the input is \fBgeographic\fR, \fBGeoConvert\fR uses the standard rules of selecting \s-1UTM\s0 vs \s-1UPS\s0 and for assigning the \s-1UTM\s0 zone (with the Norway and Svalbard exceptions). If the input is \fB\s-1UTM/UPS\s0\fR or \fB\s-1MGRS\s0\fR, then the choice between \s-1UTM\s0 and \s-1UPS\s0 and the \s-1UTM\s0 zone mirrors the input. The \fB\-z\fR \&\fIzone\fR, \fB\-s\fR, and \fB\-t\fR options allow these rules to be overridden with \fIzone\fR = 0 being used to indicate \s-1UPS.\s0 For example, the point .PP .Vb 1 \& 79.9S 6.1E .Ve .PP corresponds to possible \s-1MGRS\s0 coordinates .PP .Vb 3 \& 32CMS4324728161 (standard UTM zone = 32) \& 31CEM6066227959 (neighboring UTM zone = 31) \& BBZ1945517770 (neighboring UPS zone) .Ve .PP then .PP .Vb 4 \& echo 79.9S 6.1E | GeoConvert \-p \-3 \-m => 32CMS4328 \& echo 31CEM6066227959 | GeoConvert \-p \-3 \-m => 31CEM6027 \& echo 31CEM6066227959 | GeoConvert \-p \-3 \-m \-s => 32CMS4328 \& echo 31CEM6066227959 | GeoConvert \-p \-3 \-m \-z 0 => BBZ1917 .Ve .PP Is \fIzone\fR is specified with a hemisphere, then this is honored when printing \s-1UTM\s0 coordinates: .PP .Vb 4 \& echo \-1 3 | GeoConvert \-u => 31s 500000 9889470 \& echo \-1 3 | GeoConvert \-u \-z 31 => 31s 500000 9889470 \& echo \-1 3 | GeoConvert \-u \-z 31s => 31s 500000 9889470 \& echo \-1 3 | GeoConvert \-u \-z 31n => 31n 500000 \-110530 .Ve .PP \&\fB\s-1NOTE\s0\fR: the letter in the zone specification for \s-1UTM\s0 is a hemisphere designator \fIn\fR or \fIs\fR and \fInot\fR an \s-1MGRS\s0 latitude band letter. Convert the \s-1MGRS\s0 latitude band letter to a hemisphere as follows: replace \fIC\fR thru \fIM\fR by \fIs\fR (or \fIsouth\fR); replace \fIN\fR thru \fIX\fR by \&\fIn\fR (or \fInorth\fR). .SH "EXAMPLES" .IX Header "EXAMPLES" .Vb 4 \& echo 38SMB4488 | GeoConvert => 33.33424 44.40363 \& echo 38SMB4488 | GeoConvert \-: \-p 1 => 33:20:03.25N 044:2413.06E \& echo 38SMB4488 | GeoConvert \-u => 38n 444500 3688500 \& echo E44d24 N33d20 | GeoConvert \-m \-p \-3 => 38SMB4488 .Ve .PP GeoConvert can be used to do simple arithmetic using degree, minutes, and seconds. For example, sometimes data is tiled in 15 second squares tagged by the \s-1DMS\s0 representation of the \s-1SW\s0 corner. The tags of the tile at 38:59:45N 077:02:00W and its 8 neighbors are then given by .PP .Vb 10 \& t=0:0:15 \& for y in \-$t +0 +$t; do \& for x in \-$t +0 +$t; do \& echo 38:59:45N$y 077:02:00W$x \& done \& done | GeoConvert \-: \-p \-1 | tr \-d \*(Aq: \*(Aq \& => \& 385930N0770215W \& 385930N0770200W \& 385930N0770145W \& 385945N0770215W \& 385945N0770200W \& 385945N0770145W \& 390000N0770215W \& 390000N0770200W \& 390000N0770145W .Ve .SH "ERRORS" .IX Header "ERRORS" An illegal line of input will print an error message to standard output beginning with \f(CW\*(C`ERROR:\*(C'\fR and causes \fBGeoConvert\fR to return an exit code of 1. However, an error does not cause \fBGeoConvert\fR to terminate; following lines will be converted. .SH "ABBREVIATIONS" .IX Header "ABBREVIATIONS" .IP "\fB\s-1UTM\s0\fR" 4 .IX Item "UTM" Universal Transverse Mercator, . .IP "\fB\s-1UPS\s0\fR" 4 .IX Item "UPS" Universal Polar Stereographic, . .IP "\fB\s-1MGRS\s0\fR" 4 .IX Item "MGRS" Military Grid Reference System, . .IP "\fB\s-1WGS84\s0\fR" 4 .IX Item "WGS84" World Geodetic System 1984, . .SH "SEE ALSO" .IX Header "SEE ALSO" An online version of this utility is availbable at . .PP The algorithms for the transverse Mercator projection are described in C. F. F. Karney, \fITransverse Mercator with an accuracy of a few nanometers\fR, J. Geodesy \fB85\fR(8), 475\-485 (Aug. 2011); \s-1DOI\s0 ; preprint . .SH "AUTHOR" .IX Header "AUTHOR" \&\fBGeoConvert\fR was written by Charles Karney. .SH "HISTORY" .IX Header "HISTORY" \&\fBGeoConvert\fR was added to GeographicLib, , in 2009\-01.