.\" -*- coding: UTF-8 -*- .\" Copyright (c) 2013 by Michael Kerrisk .\" and Copyright (c) 2012 by Eric W. Biederman .\" .\" %%%LICENSE_START(VERBATIM) .\" Permission is granted to make and distribute verbatim copies of this .\" manual provided the copyright notice and this permission notice are .\" preserved on all copies. .\" .\" Permission is granted to copy and distribute modified versions of this .\" manual under the conditions for verbatim copying, provided that the .\" entire resulting derived work is distributed under the terms of a .\" permission notice identical to this one. .\" .\" Since the Linux kernel and libraries are constantly changing, this .\" manual page may be incorrect or out-of-date. The author(s) assume no .\" responsibility for errors or omissions, or for damages resulting from .\" the use of the information contained herein. The author(s) may not .\" have taken the same level of care in the production of this manual, .\" which is licensed free of charge, as they might when working .\" professionally. .\" .\" Formatted or processed versions of this manual, if unaccompanied by .\" the source, must acknowledge the copyright and authors of this work. .\" %%%LICENSE_END .\" .\" .\"******************************************************************* .\" .\" This file was generated with po4a. Translate the source file. .\" .\"******************************************************************* .TH PID_NAMESPACES 7 "1 novembre 2020" Linux "Manuel du programmeur Linux" .SH NOM pid_namespaces \- Présentation des espaces de noms d'identifiants de processus (ou PID) sous Linux .SH DESCRIPTION Pour une présentation générale des espaces de noms, consultez \fBnamespaces\fP(7). .PP Les espaces de noms PID isolent les espaces de numéros d'identifiants de processus, ce qui signifie que des processus de différents espaces de noms PID peuvent avoir le même PID. Les espaces de noms PID permettent aux conteneurs de fournir des possibilités telles que la suspension et la reprise de l’ensemble des processus d’un conteneur et la migration du conteneur vers un nouvel hôte tout en permettant aux processus du conteneur de conserver leurs PID. .PP Dans un nouvel espace de noms PID, la numérotation commence à\ 1 comme pour un système autonome et les appels à \fBfork\fP(2), \fBvfork\fP(2) ou \fBclone\fP(2) génèrent des identifiants de processus uniques dans l'espace de noms PID. .PP .\" .\" ============================================================ .\" Le noyau doit avoir été configuré avec l'option \fBCONFIG_PID_NS\fP pour permettre l'utilisation des espaces noms PID. .SS "Le processus d'initialisation (init) de l'espace de noms" Le premier processus créé dans un nouvel espace de noms (c'est\-à\-dire le processus créé par \fBclone\fP(2) avec l'attribut \fBCLONE_NEWPID\fP ou le premier processus enfant créé après un appel à \fBunshare\fP(2) avec l'attribut \fBCLONE_NEWPID\fP) a pour PID\ 1. Il est le processus «\ init\ » pour l'espace de noms (consultez \fBinit\fP(1)). Ce processus devient le parent pour n’importe quel processus enfant qui devient orphelin parce qu’un processus résidant dans cet espace de noms PID se termine (voir ci\-après pour plus de détails). .PP Si le processus «\ init\ » d'un espace de noms PID se termine, le noyau tue tous les processus de cet espace de noms au moyen du signal \fBSIGKILL\fP. Ce comportement illustre le fait que le processus «\ init\ » est essentiel au bon fonctionnement de l'espace de noms PID. Dans ce cas, une commande \fBfork\fP(2) ultérieure dans cet espace de noms PID échouera en renvoyant l'erreur \fBENOMEM\fP. Il n'est plus possible de créer des processus dans un espace de noms PID dont le processus «\ init\ » est terminé. Cela peut, par exemple, se produire lorsqu'un processus utilise un descripteur de fichier ouvert pour un fichier \fI/proc/[pid]/ns/pid\fP correspondant à un processus d'un espace de noms pour une réassociation (\fBsetns\fP(2)) dans cet espace de noms après que le processus «\ init\ » soit terminé. Un autre scénario est possible après un appel à \fBunshare\fP(2)\ : si le premier enfant créé par un appel à \fBfork\fP(2) se termine, alors les appels ultérieurs à \fBfork\fP(2) échoueront en renvoyant l'erreur \fBENOMEM\fP. .PP Seuls les signaux pour lesquels le processus «\ init\ » a défini un gestionnaire de signal peuvent être envoyés au processus «\ init\ » par les autres processus de l'espace de noms PID. Cette règle s'applique également aux processus disposant de privilèges et permet d'éviter qu'un processus membre de l'espace de noms PID ne tue accidentellement le processus «\ init\ ». .PP De même, un processus d'un espace ancêtre peut \(em\ en tenant compte des vérifications de droits habituelles décrites dans \fBkill\fP(2)\ \(em envoyer des signaux au processus «\ init\ » d’un espace de noms enfant, à la condition que le processus «\ init\ » ait établi un gestionnaire pour ce signal. Le champ \fIsi_pid\fP de \fIsiginfo_t\fP décrit dans \fBsigaction\fP(2) pour ce gestionnaire vaudra zéro. \fBSIGKILL\fP et \fBSIGSTOP\fP font figure d'exception\ : ces signaux seront appliqués «\ de force\ » lorsqu'ils sont émis depuis un espace de noms PID ancêtre. Ces signaux ne peuvent pas être interceptés par le processus «\ init\ » et les actions associées à ces processus seront exécutées (respectivement, tuer ou suspendre l'exécution du processus). .PP .\" .\" ============================================================ .\" Depuis Linux\ 3.4, l’appel système \fBreboot\fP(2) déclenche l'envoi d'un signal aux processus «\ init\ » des espaces de noms. Consultez \fBreboot\fP(2) pour obtenir plus d'informations. .SS "Imbrication des espaces de noms PID" .\" commit f2302505775fd13ba93f034206f1e2a587017929 .\" The kernel constant MAX_PID_NS_LEVEL Les espaces de noms PID peuvent être imbriqués\ : tous les espaces de noms PID ont un parent, sauf l'espace de noms PID initial («\ root\ »). Le parent d'un espace de noms PID est l'espace de noms PID du processus qui a créé l'espace de noms à l’aide de \fBclone\fP(2) ou \fBunshare\fP(2). Les espaces de noms PID forment donc une arborescence dans laquelle chaque espace de noms peut remonter jusqu'à l'espace «\ root\ ». Depuis Linux\ 3.7, le noyau limite la profondeur maximale d’imbrication pour les espace de noms PID à\ 32. .PP Un processus est visible de tous les processus de son espace de noms PID, et de tous les processus des espaces de noms PID ancêtres qui le séparent de l'espace PID\ «\ root\ ». Ici, on entend par «\ visible\ » qu'un autre processus peut être la cible d’opérations d’un autre processus utilisant des appels système qui précisent l’ID du processus. Inversement, les processus d'un espace de noms PID enfant ne peuvent pas voir les processus de l’espace parent et des espaces de noms ancêtre éloignés. En résumé, un processus peut seulement voir (c'est\-à\-dire envoyer des signaux avec \fBkill\fP(2), définir des valeurs de courtoisie avec \fBsetpriority\fP(2),\ etc.) les processus de son propre espace de noms PID et des espaces de noms de sa descendance. .PP Un processus a un identifiant dans chaque niveau de la hiérarchie des espaces de noms PID dans lequel il est visible, et ce en remontant chaque espace de noms ancêtre jusqu'à l'espace de noms PID «\ root\ ». Les appels système qui s'exécutent sur des identifiants de processus s'appliquent à l'identifiant du processus qui est visible dans l’espace de noms PID de l'appelant. Un appel à \fBgetpid\fP(2) renvoie toujours le PID associé à l'espace de noms dans lequel le processus a été créé. .PP Certains processus d'un espace de noms PID peuvent avoir des parents en dehors de cet espace. Par exemple, le parent du processus initial de l'espace de noms (\fBinit\fP(1), processus dont le PID est\ 1) se trouve forcément en dehors de cet espace. De même, l’enfant direct d'un processus qui a invoqué \fBsetns\fP(2) pour que son enfant rejoigne un espace de noms PID, se trouve dans un espace de noms PID différent de celui de l'appelant à \fBsetns\fP(2). Les appels à \fBgetppid\fP(2) pour de tels processus renvoient\ \fB0\fP. .PP Alors que les processus peuvent descendre librement dans les espaces de noms enfant (par exemple, en utilisant \fBsetns\fP(2) avec un descripteur de fichier d’espace de noms PID), ils ne peuvent pas se déplacer dans l’autre direction. Cela veut dire que les processus ne peuvent entrer dans aucun espace de noms ancêtre (parent, grand\-parent,\ etc.). La modification d’espace de noms PID est une opération à sens unique. .PP .\" .\" ============================================================ .\" L’opération \fBNS_GET_PARENT\fP d’\fBioctl\fP(2) peut être utilisée pour découvrir la relation parentale entre les espaces de noms PID. Consultez \fBioctl_ns\fP(2). .SS "Sémantiques de setns(2) et de unshare(2) " Les appels à \fBsetns\fP(2) qui indiquent un descripteur de fichier d'un espace de noms PID et les appels à \fBunshare\fP(2) avec l'attribut \fBCLONE_NEWPID\fP font que les processus enfant qui seront créés par la suite seront placés dans un espace de noms PID différent de celui de l'appelant. Depuis Linux\ 4.12, cet espace de noms PID est affiché à l’aide du fichier \fI/proc/[pid]/ns/pid_for_children\fP, comme décrit dans \fBnamespaces\fP(7). Cependant, ces appels ne changent pas l’espace de noms PID du processus appelant, parce que le faire modifierait la perception par l'appelant de son propre PID (comme indiqué dans \fBgetpid\fP()), cassant de nombreuses applications et bibliothèques. .PP Pour présenter les choses différemment, l'appartenance d'un processus à un espace de noms PID est déterminée lors de la création du processus et ne peut plus être changée ensuite. Cela signifie que la relation parent\-enfant entre processus reproduit la relation parentale entre des espaces de noms PID\ : le parent d'un processus est soit dans le même espace de noms, soit dans l'espace de noms PID du parent immédiat. .PP .\" .\" ============================================================ .\" Un processus peut appeler \fBunshare\fP(2) avec l’indicateur \fBCLONE_NEWPID\fP seulement une fois. Après avoir réalisé cette opération, son lien symbolique \fI/proc/PID/ns/pid_for_children\fP sera vide jusqu’à la création du premier enfant dans l’espace de noms. .SS "Adoption d’un enfant orphelin" .\" Furthermore, by definition, the parent of the "init" process .\" of a PID namespace resides in the parent PID namespace. .\" .\" ============================================================ .\" Quand un processus enfant devient orphelin, il est réapparenté au processus «\ init\ » dans l’espace de noms PID de son parent (sinon un des ancêtres les plus proches du parent employé dans la commande \fBPR_SET_CHILD_SUBREAPER\fP de \fBprctl\fP(2) pour être marqué comme le récupérateur des processus de descendants orphelins). Il est à noter qu’à cause des sémantiques de \fBsetns\fP(2) et \fBunshare\fP(2) décrites ci\-dessus, cela peut être le processus «\ init\ » dans l’espace de noms PID qui est le \fIparent\fP de l’espace de noms PID de l’enfant, plutôt que le processus «\ init\ » dans le propre espace de noms PID\ de l’enfant. .SS "Compatibilité de CLONE_NEWPID avec les autres attributs CLONE_*" Dans les versions actuelles de Linux, \fBCLONE_NEWPID\fP ne peut pas être combiné avec \fBCLONE_THREAD\fP. Les threads doivent être dans le même espace de noms PID de telle façon que les threads puissent s’envoyer des signaux les uns aux autres. De la même façon, il doit être possible de voir tous les threads d’un processus dans le système de fichiers \fBproc\fP(5). De plus, si deux threads étaient dans des espaces de noms PID\ différents, l’ID de processus du processus envoyant un signal ne pourrait pas être encodé judicieusement lors de l’envoi d’un signal (consultez la description du type \fIsiginfo_t\fP dans \fBsigaction\fP(2)). Puisque que cela a du sens lorsqu'un signal est mis en file d’attente, une file de signaux partagée par des processus dans plusieurs espaces de noms PID irait à l’encontre de cela. .PP .\" Note these restrictions were all introduced in .\" 8382fcac1b813ad0a4e68a838fc7ae93fa39eda0 .\" when CLONE_NEWPID|CLONE_VM was disallowed .\" (restriction lifted in faf00da544045fdc1454f3b9e6d7f65c841de302) .\" (restriction lifted in e79f525e99b04390ca4d2366309545a836c03bf1) .\" .\" ============================================================ .\" De plus dans les premières versions de Linux, \fBCLONE_NEWPID\fP n’était pas autorisé (échouant avec l’erreur \fBEINVAL\fP) en combinaison avec \fBCLONE_SIGHAND\fP (avant Linux\ 4.3) ainsi que \fBCLONE_VM\fP (avant Linux\ 3.12). Les modifications qui ont apporté ces restrictions ont été aussi portées sur les précédents noyaux stables. .SS "/proc et espaces de noms PID" Un système de fichiers \fI/proc\fP ne présente (dans les répertoires \fI/proc/[pid]\fP) que les processus visibles dans l'espace de noms PID du processus qui a effectué le montage, même si le système de fichiers \fI/proc\fP est vu par des processus appartenant à d'autres espaces de noms. .PP Après la création d'un nouvel espace de noms PID, un enfant peut avoir intérêt à changer son répertoire racine et à monter une nouvelle instance procfs sur \fI/proc\fP afin d'assurer que des commandes comme \fBps\fP(1) fonctionneront correctement. Si un nouvel espace de noms montage est créé simultanément en invoquant \fBclone\fP(2) ou \fBunshare\fP(2) avec l'argument \fBCLONE_NEWNS\fP, il n'est alors pas nécessaire de changer le répertoire racine\ : une nouvelle instance procfs peut être montée directement dans \fI/proc\fP. .PP Depuis un interpréteur de commandes, la commande permettant de monter \fI/proc\fP est\ : .PP .in +4n .EX $ mount \-t proc proc /proc .EE .in .PP .\" .\" ============================================================ .\" L'appel de \fBreadlink\fP(2) appliqué au chemin \fI/proc/self\fP affiche les identifiants des processus de l'appelant dans l'espace de noms PID du montage procfs (c'est\-à\-dire l'espace de noms PID du processus qui a monté procfs). Cela peut être utile lorsque qu'un processus a besoin de connaître son PID dans un autre espace de noms. .SS "Fichiers /proc" .TP \fI/proc/sys/kernel/ns_last_pid\fP (depuis Linux 3.3) .\" commit b8f566b04d3cddd192cfd2418ae6d54ac6353792 Ce fichier (virtualisé par espace de noms PID) affiche le dernier PID qui a été alloué dans cet espace de noms PID. Quand le prochain PID est alloué, le noyau recherchera le plus petit PID non alloué qui est supérieur à cette valeur, et quand ce fichier est lu ultérieurement, il affiche ce PID. .IP .\" This ability is necessary to support checkpoint restore in user-space .\" .\" ============================================================ .\" Un processus peut écrire sur ce fichier s’il a la capacité \fBCAP_SYS_ADMIN\fP ou (depuis Linux\ 5.9) \fBCAP_CHECKPOINT_RESTORE\fP à l’intérieur de l’espace de noms utilisateur qui possède l’espace de noms PID. Cela rend possible de déterminer le PID qui est alloué au prochain processus créé dans cet espace de noms PID. .SS Divers Lorsqu'un identifiant de processus est transmis à l’aide d’un socket de domaine UNIX à un processus d'un autre espace de noms PID (consultez \fBSCM_CREDENTIALS\fP dans \fBunix\fP(7)), il est transformé pour devenir le PID correspondant dans l'espace de noms PID du processus recevant. .SH CONFORMITÉ Les espaces de noms sont propres à Linux. .SH EXEMPLES Consultez \fBuser_namespaces\fP(7). .SH "VOIR AUSSI" \fBclone\fP(2), \fBreboot\fP(2), \fBsetns\fP(2), \fBunshare\fP(2), \fBproc\fP(5), \fBcapabilities\fP(7), \fBcredentials\fP(7), \fBmount_namespaces\fP(7), \fBnamespaces\fP(7), \fBuser_namespaces\fP(7), \fBswitch_root\fP(8) .SH COLOPHON Cette page fait partie de la publication\ 5.10 du projet \fIman\-pages\fP Linux. Une description du projet et des instructions pour signaler des anomalies et la dernière version de cette page peuvent être trouvées à l'adresse \%https://www.kernel.org/doc/man\-pages/. .PP .SH TRADUCTION La traduction française de cette page de manuel a été créée par Christophe Blaess , Stéphan Rafin , Thierry Vignaud , François Micaux, Alain Portal , Jean-Philippe Guérard , Jean-Luc Coulon (f5ibh) , Julien Cristau , Thomas Huriaux , Nicolas François , Florentin Duneau , Simon Paillard , Denis Barbier , David Prévot , Cédric Boutillier , Frédéric Hantrais et Jean-Paul Guillonneau . .PP Cette traduction est une documentation libre ; veuillez vous reporter à la .UR https://www.gnu.org/licenses/gpl-3.0.html GNU General Public License version 3 .UE concernant les conditions de copie et de distribution. Il n'y a aucune RESPONSABILITÉ LÉGALE. .PP Si vous découvrez un bogue dans la traduction de cette page de manuel, veuillez envoyer un message à .MT debian-l10n-french@lists.debian.org .ME .