.nh .TH podman-kube-play 1 .SH NAME .PP podman-kube-play - Create containers, pods and volumes based on Kubernetes YAML .SH SYNOPSIS .PP \fBpodman kube play\fP [\fIoptions\fP] \fIfile.yml|-|https://website.io/file.yml\fP .SH DESCRIPTION .PP \fBpodman kube play\fP will read in a structured file of Kubernetes YAML. It will then recreate the containers, pods or volumes described in the YAML. Containers within a pod are then started and the ID of the new Pod or the name of the new Volume is output. If the yaml file is specified as "-" then \fB\fCpodman kube play\fR will read the YAML file from stdin. Using the \fB\fC--down\fR command line option, it is also capable of tearing down the pods created by a previous run of \fB\fCpodman kube play\fR\&. Using the \fB\fC--replace\fR command line option, it will tear down the pods(if any) created by a previous run of \fB\fCpodman kube play\fR and recreate the pods with the Kubernetes YAML file. Ideally the input file would be one created by Podman (see podman-kube-generate(1)). This would guarantee a smooth import and expected results. The input can also be a URL that points to a YAML file such as https://podman.io/demo.yml. \fB\fCpodman kube play\fR will read the YAML from the URL and create pods and containers from it. .PP Currently, the supported Kubernetes kinds are: - Pod - Deployment - PersistentVolumeClaim - ConfigMap .PP \fB\fCKubernetes Pods or Deployments\fR .PP Only three volume types are supported by kube play, the \fIhostPath\fP, \fIemptyDir\fP, and \fIpersistentVolumeClaim\fP volume types. For the \fIhostPath\fP volume type, only the \fIdefault (empty)\fP, \fIDirectoryOrCreate\fP, \fIDirectory\fP, \fIFileOrCreate\fP, \fIFile\fP, \fISocket\fP, \fICharDevice\fP and \fIBlockDevice\fP subtypes are supported. Podman interprets the value of \fIhostPath\fP \fIpath\fP as a file path when it contains at least one forward slash, otherwise Podman treats the value as the name of a named volume. When using a \fIpersistentVolumeClaim\fP, the value for \fIclaimName\fP is the name for the Podman named volume. When using an \fIemptyDir\fP volume, podman creates an anonymous volume that is attached the containers running inside the pod and is deleted once the pod is removed. .PP Note: When playing a kube YAML with init containers, the init container will be created with init type value \fB\fConce\fR\&. To change the default type, use the \fB\fCio.podman.annotations.init.container.type\fR annotation to set the type to \fB\fCalways\fR\&. .PP Note: \fIhostPath\fP volume types created by kube play will be given an SELinux shared label (z), bind mounts are not relabeled (use \fB\fCchcon -t container_file_t -R \fR). .PP Note: If the \fB\fC:latest\fR tag is used, Podman will attempt to pull the image from a registry. If the image was built locally with Podman or Buildah, it will have \fB\fClocalhost\fR as the domain, in that case, Podman will use the image from the local store even if it has the \fB\fC:latest\fR tag. .PP Note: The command \fB\fCpodman play kube\fR is an alias of \fB\fCpodman kube play\fR, and will perform the same function. .PP Note: The command \fB\fCpodman kube down\fR can be used to stop and remove pods or containers based on the same Kubernetes YAML used by \fB\fCpodman kube play\fR to create them. .PP \fB\fCKubernetes PersistentVolumeClaims\fR .PP A Kubernetes PersistentVolumeClaim represents a Podman named volume. Only the PersistentVolumeClaim name is required by Podman to create a volume. Kubernetes annotations can be used to make use of the available options for Podman volumes. .RS .IP \(bu 2 volume.podman.io/driver .IP \(bu 2 volume.podman.io/device .IP \(bu 2 volume.podman.io/type .IP \(bu 2 volume.podman.io/uid .IP \(bu 2 volume.podman.io/gid .IP \(bu 2 volume.podman.io/mount-options .RE .PP Kube play is capable of building images on the fly given the correct directory layout and Containerfiles. This option is not available for remote clients, including Mac and Windows (excluding WSL2) machines, yet. Consider the following excerpt from a YAML file: .PP .RS .nf apiVersion: v1 kind: Pod metadata: ... spec: containers: - command: - top - name: container value: podman image: foobar ... .fi .RE .PP If there is a directory named \fB\fCfoobar\fR in the current working directory with a file named \fB\fCContainerfile\fR or \fB\fCDockerfile\fR, Podman kube play will build that image and name it \fB\fCfoobar\fR\&. An example directory structure for this example would look like: .PP .RS .nf |- mykubefiles |- myplayfile.yaml |- foobar |- Containerfile .fi .RE .PP The build will consider \fB\fCfoobar\fR to be the context directory for the build. If there is an image in local storage called \fB\fCfoobar\fR, the image will not be built unless the \fB\fC--build\fR flag is used. Use \fB\fC--build=false\fR to completely disable builds. .PP \fB\fCKubernetes ConfigMap\fR .PP Kubernetes ConfigMap can be referred as a source of environment variables or volumes in Pods or Deployments. ConfigMaps aren't a standalone object in Podman; instead, when a container uses a ConfigMap, Podman will create environment variables or volumes as needed. .PP For example, the following YAML document defines a ConfigMap and then uses it in a Pod: .PP .RS .nf apiVersion: v1 kind: ConfigMap metadata: name: foo data: FOO: bar --- apiVersion: v1 kind: Pod metadata: name: foobar spec: containers: - command: - top name: container-1 image: foobar envFrom: - configMapRef: name: foo optional: false .fi .RE .PP and as a result environment variable \fB\fCFOO\fR will be set to \fB\fCbar\fR for container \fB\fCcontainer-1\fR\&. .SH OPTIONS .SS \fB--annotation\fP=\fIkey=value\fP .PP Add an annotation to the container or pod. This option can be set multiple times. .SS \fB--authfile\fP=\fIpath\fP .PP Path of the authentication file. Default is \fB\fC${XDG_RUNTIME_DIR}/containers/auth.json\fR, which is set using \fBpodman login\fP\&. If the authorization state is not found there, \fB\fC$HOME/.docker/config.json\fR is checked, which is set using \fBdocker login\fP\&. .PP Note: There is also the option to override the default path of the authentication file by setting the \fB\fCREGISTRY_AUTH_FILE\fR environment variable. This can be done with \fBexport REGISTRY_AUTH_FILE=\fIpath\fP\fP\&. .SS \fB--build\fP .PP Build images even if they are found in the local storage. Use \fB\fC--build=false\fR to completely disable builds. (This option is not available with the remote Podman client) .SS \fB--cert-dir\fP=\fIpath\fP .PP Use certificates at \fIpath\fP (*\&.crt, *\&.cert, *\&.key) to connect to the registry. (Default: /etc/containers/certs.d) Please refer to \fBcontainers-certs.d(5)\fP for details. (This option is not available with the remote Podman client, including Mac and Windows (excluding WSL2) machines) .SS \fB--configmap\fP=\fIpath\fP .PP Use Kubernetes configmap YAML at path to provide a source for environment variable values within the containers of the pod. (This option is not available with the remote Podman client) .PP Note: The \fI--configmap\fP option can be used multiple times or a comma-separated list of paths can be used to pass multiple Kubernetes configmap YAMLs. .SS \fB--context-dir\fP=\fIpath\fP .PP Use \fIpath\fP as the build context directory for each image. Requires --build option be true. (This option is not available with the remote Podman client) .SS \fB--creds\fP=\fI[username[:password]]\fP .PP The [username[:password]] to use to authenticate with the registry, if required. If one or both values are not supplied, a command line prompt will appear and the value can be entered. The password is entered without echo. .SS \fB--help\fP, \fB-h\fP .PP Print usage statement .SS \fB--ip\fP=\fIIP address\fP .PP Assign a static ip address to the pod. This option can be specified several times when kube play creates more than one pod. Note: When joining multiple networks you should use the \fB--network name:ip=\fP syntax. .SS \fB--log-driver\fP=\fIdriver\fP .PP Set logging driver for all created containers. .SS \fB--log-opt\fP=\fIname=value\fP .PP Logging driver specific options. .PP Set custom logging configuration. The following *name*s are supported: .PP \fBpath\fP: specify a path to the log file (e.g. \fB--log-opt path=/var/log/container/mycontainer.json\fP); .PP \fBmax-size\fP: specify a max size of the log file (e.g. \fB--log-opt max-size=10mb\fP); .PP \fBtag\fP: specify a custom log tag for the container (e.g. \fB--log-opt tag="{{.ImageName}}"\fP\&. It supports the same keys as \fBpodman inspect --format\fP\&. This option is currently supported only by the \fBjournald\fP log driver. .SS \fB--mac-address\fP=\fIMAC address\fP .PP Assign a static mac address to the pod. This option can be specified several times when kube play creates more than one pod. Note: When joining multiple networks you should use the \fB--network name:mac=\fP syntax. .SS \fB--network\fP=\fImode\fP, \fB--net\fP .PP Set the network mode for the pod. .PP Valid \fImode\fP values are: .RS .IP \(bu 2 \fBbridge[:OPTIONS,...]\fP: Create a network stack on the default bridge. This is the default for rootful containers. It is possible to specify these additional options: .RS .IP \(bu 2 \fBalias=name\fP: Add network-scoped alias for the container. .IP \(bu 2 \fBip=IPv4\fP: Specify a static ipv4 address for this container. .IP \(bu 2 \fBip=IPv6\fP: Specify a static ipv6 address for this container. .IP \(bu 2 \fBmac=MAC\fP: Specify a static mac address for this container. .IP \(bu 2 \fBinterface_name\fP: Specify a name for the created network interface inside the container. .RE .RE .PP For example to set a static ipv4 address and a static mac address, use \fB\fC--network bridge:ip=10.88.0.10,mac=44:33:22:11:00:99\fR\&. - [:OPTIONS,...]: Connect to a user-defined network; this is the network name or ID from a network created by \fBpodman network create\fP\&. Using the network name implies the bridge network mode. It is possible to specify the same options described under the bridge mode above. You can use the \fB--network\fP option multiple times to specify additional networks. - \fBnone\fP: Create a network namespace for the container but do not configure network interfaces for it, thus the container has no network connectivity. - \fBcontainer:\fP\fIid\fP: Reuse another container's network stack. - \fBhost\fP: Do not create a network namespace, the container will use the host's network. Note: The host mode gives the container full access to local system services such as D-bus and is therefore considered insecure. - \fBns:\fP\fIpath\fP: Path to a network namespace to join. - \fBprivate\fP: Create a new namespace for the container. This will use the \fBbridge\fP mode for rootful containers and \fBslirp4netns\fP for rootless ones. - \fBslirp4netns[:OPTIONS,...]\fP: use \fBslirp4netns\fP(1) to create a user network stack. This is the default for rootless containers. It is possible to specify these additional options, they can also be set with \fB\fCnetwork_cmd_options\fR in containers.conf: - \fBallow_host_loopback=true|false\fP: Allow slirp4netns to reach the host loopback IP (default is 10.0.2.2 or the second IP from slirp4netns cidr subnet when changed, see the cidr option below). The default is false. - \fBmtu=MTU\fP: Specify the MTU to use for this network. (Default is \fB\fC65520\fR). - \fBcidr=CIDR\fP: Specify ip range to use for this network. (Default is \fB\fC10.0.2.0/24\fR). - \fBenable_ipv6=true|false\fP: Enable IPv6. Default is true. (Required for \fB\fCoutbound_addr6\fR). - \fBoutbound_addr=INTERFACE\fP: Specify the outbound interface slirp should bind to (ipv4 traffic only). - \fBoutbound_addr=IPv4\fP: Specify the outbound ipv4 address slirp should bind to. - \fBoutbound_addr6=INTERFACE\fP: Specify the outbound interface slirp should bind to (ipv6 traffic only). - \fBoutbound_addr6=IPv6\fP: Specify the outbound ipv6 address slirp should bind to. - \fBport_handler=rootlesskit\fP: Use rootlesskit for port forwarding. Default. Note: Rootlesskit changes the source IP address of incoming packets to an IP address in the container network namespace, usually \fB\fC10.0.2.100\fR\&. If your application requires the real source IP address, e.g. web server logs, use the slirp4netns port handler. The rootlesskit port handler is also used for rootless containers when connected to user-defined networks. - \fBport_handler=slirp4netns\fP: Use the slirp4netns port forwarding, it is slower than rootlesskit but preserves the correct source IP address. This port handler cannot be used for user-defined networks. .PP When no network option is specified and \fIhost\fP network mode is not configured in the YAML file, a new network stack is created and pods are attached to it making possible pod to pod communication. .SS \fB--no-hosts\fP .PP Do not create \fI/etc/hosts\fP for the pod. By default, Podman will manage \fI/etc/hosts\fP, adding the container's own IP address and any hosts from \fB--add-host\fP\&. \fB--no-hosts\fP disables this, and the image's \fI/etc/hosts\fP will be preserved unmodified. .PP This option conflicts with host added in the Kubernetes YAML. .SS \fB--quiet\fP, \fB-q\fP .PP Suppress output information when pulling images .SS \fB--replace\fP .PP Tears down the pods created by a previous run of \fB\fCkube play\fR and recreates the pods. This option is used to keep the existing pods up to date based upon the Kubernetes YAML. .SS \fB--seccomp-profile-root\fP=\fIpath\fP .PP Directory path for seccomp profiles (default: "/var/lib/kubelet/seccomp"). (This option is not available with the remote Podman client, including Mac and Windows (excluding WSL2) machines) .SS \fB--start\fP .PP Start the pod after creating it, set to false to only create it. .SS \fB--tls-verify\fP .PP Require HTTPS and verify certificates when contacting registries (default: \fBtrue\fP). If explicitly set to \fBtrue\fP, TLS verification will be used. If set to \fBfalse\fP, TLS verification will not be used. If not specified, TLS verification will be used unless the target registry is listed as an insecure registry in \fBcontainers-registries.conf(5)\fP .SS \fB--userns\fP=\fImode\fP .PP Set the user namespace mode for the container. It defaults to the \fBPODMAN_USERNS\fP environment variable. An empty value ("") means user namespaces are disabled unless an explicit mapping is set with the \fB--uidmap\fP and \fB--gidmap\fP options. .PP This option is incompatible with \fB--gidmap\fP, \fB--uidmap\fP, \fB--subuidname\fP and \fB--subgidname\fP\&. .PP Rootless user --userns=Key mappings: .TS allbox; l l l l l l . \fB\fCKey\fR \fB\fCHost User\fR \fB\fCContainer User\fR "" $UID T{ 0 (Default User account mapped to root user in container.) T} keep-id $UID T{ $UID (Map user account to same UID within container.) T} auto $UID T{ nil (Host User UID is not mapped into container.) T} nomap $UID T{ nil (Host User UID is not mapped into container.) T} .TE .PP Valid \fImode\fP values are: .PP \fBauto\fP[:\fIOPTIONS,...\fP]: automatically create a unique user namespace. .PP The \fB\fC--userns=auto\fR flag, requires that the user name \fB\fCcontainers\fR and a range of subordinate user ids that the Podman container is allowed to use be specified in the /etc/subuid and /etc/subgid files. .PP Example: \fB\fCcontainers:2147483647:2147483648\fR\&. .PP Podman allocates unique ranges of UIDs and GIDs from the \fB\fCcontainers\fR subordinate user ids. The size of the ranges is based on the number of UIDs required in the image. The number of UIDs and GIDs can be overridden with the \fB\fCsize\fR option. .PP The rootless option \fB\fC--userns=keep-id\fR uses all the subuids and subgids of the user. Using \fB\fC--userns=auto\fR when starting new containers will not work as long as any containers exist that were started with \fB\fC--userns=keep-id\fR\&. .PP Valid \fB\fCauto\fR options: .RS .IP \(bu 2 \fIgidmapping\fP=_CONTAINER_GID:HOST\fIGID:SIZE\fP: to force a GID mapping to be present in the user namespace. .IP \(bu 2 \fIsize\fP=\fISIZE\fP: to specify an explicit size for the automatic user namespace. e.g. \fB\fC--userns=auto:size=8192\fR\&. If \fB\fCsize\fR is not specified, \fB\fCauto\fR will estimate a size for the user namespace. .IP \(bu 2 \fIuidmapping\fP=_CONTAINER_UID:HOST\fIUID:SIZE\fP: to force a UID mapping to be present in the user namespace. .RE .PP \fBcontainer:\fP\fIid\fP: join the user namespace of the specified container. .PP \fBhost\fP: run in the user namespace of the caller. The processes running in the container will have the same privileges on the host as any other process launched by the calling user (default). .PP \fBkeep-id\fP: creates a user namespace where the current rootless user's UID:GID are mapped to the same values in the container. This option is not allowed for containers created by the root user. .PP Valid \fB\fCkeep-id\fR options: .RS .IP \(bu 2 \fIuid\fP=UID: override the UID inside the container that will be used to map the current rootless user to. .IP \(bu 2 \fIgid\fP=GID: override the GID inside the container that will be used to map the current rootless user to. .RE .PP \fBnomap\fP: creates a user namespace where the current rootless user's UID:GID are not mapped into the container. This option is not allowed for containers created by the root user. .PP \fBns:\fP\fInamespace\fP: run the pod in the given existing user namespace. .SH EXAMPLES .PP Recreate the pod and containers as described in a file called \fB\fCdemo.yml\fR .PP .RS .nf $ podman kube play demo.yml 52182811df2b1e73f36476003a66ec872101ea59034ac0d4d3a7b40903b955a6 .fi .RE .PP Recreate the pod and containers as described in a file \fB\fCdemo.yml\fR sent to stdin .PP .RS .nf $ cat demo.yml | podman kube play - 52182811df2b1e73f36476003a66ec872101ea59034ac0d4d3a7b40903b955a6 .fi .RE .PP Teardown the pod and containers as described in a file \fB\fCdemo.yml\fR .PP .RS .nf $ podman kube play --down demo.yml Pods stopped: 52182811df2b1e73f36476003a66ec872101ea59034ac0d4d3a7b40903b955a6 Pods removed: 52182811df2b1e73f36476003a66ec872101ea59034ac0d4d3a7b40903b955a6 .fi .RE .PP Provide \fB\fCconfigmap-foo.yml\fR and \fB\fCconfigmap-bar.yml\fR as sources for environment variables within the containers. .PP .RS .nf $ podman kube play demo.yml --configmap configmap-foo.yml,configmap-bar.yml 52182811df2b1e73f36476003a66ec872101ea59034ac0d4d3a7b40903b955a6 $ podman kube play demo.yml --configmap configmap-foo.yml --configmap configmap-bar.yml 52182811df2b1e73f36476003a66ec872101ea59034ac0d4d3a7b40903b955a6 .fi .RE .PP Create a pod connected to two networks (called net1 and net2) with a static ip .PP .RS .nf $ podman kube play demo.yml --network net1:ip=10.89.1.5 --network net2:ip=10.89.10.10 52182811df2b1e73f36476003a66ec872101ea59034ac0d4d3a7b40903b955a6 .fi .RE .PP Please take into account that networks must be created first using podman-network-create(1). .PP Create and teardown from a URL pointing to a YAML file .PP .RS .nf $ podman kube play https://podman.io/demo.yml 52182811df2b1e73f36476003a66ec872101ea59034ac0d4d3a7b40903b955a6 $ podman kube play --down https://podman.io/demo.yml Pods stopped: 52182811df2b1e73f36476003a66ec872101ea59034ac0d4d3a7b40903b955a6 Pods removed: 52182811df2b1e73f36476003a66ec872101ea59034ac0d4d3a7b40903b955a6 .fi .RE .PP \fB\fCpodman kube play --down\fR will not work with a URL if the YAML file the URL points to has been changed or altered. .SH Podman Kube Play Support .PP This document outlines the kube yaml fields that are currently supported by the \fBpodman kube play\fP command. .PP Note: \fBN/A\fP means that the option cannot be supported in a single-node Podman environment. .SH Pod Fields .TS allbox; l l l l . \fB\fCField\fR \fB\fCSupport\fR containers ✅ initContainers ✅ imagePullSecrets enableServiceLinks os\&.name volumes nodeSelector N/A nodeName N/A affinity.nodeAffinity N/A affinity.podAffinity N/A affinity.podAntiAffinity N/A tolerations.key N/A tolerations.operator N/A tolerations.effect N/A tolerations.tolerationSeconds N/A schedulerName N/A runtimeClassName priorityClassName priority T{ topologySpreadConstraints.maxSkew T} N/A T{ topologySpreadConstraints.topologyKey T} N/A T{ topologySpreadConstraints.whenUnsatisfiable T} N/A T{ topologySpreadConstraints.labelSelector T} N/A T{ topologySpreadConstraints.minDomains T} N/A restartPolicy ✅ terminationGracePeriod activeDeadlineSeconds readinessGates.conditionType hostname ✅ setHostnameAsFQDN subdomain hostAliases.hostnames ✅ hostAliases.ip ✅ dnsConfig.nameservers ✅ dnsConfig\&.options.name ✅ dnsConfig.options.value ✅ dnsConfig.searches ✅ dnsPolicy hostNetwork ✅ hostPID hostIPC shareProcessNamespace ✅ serviceAccountName automountServiceAccountToken securityContext.runAsUser securityContext.runAsNonRoot securityContext.runAsGroup T{ securityContext.supplementalGroups T} securityContext.fsGroup T{ securityContext.fsGroupChangePolicy T} T{ securityContext.seccompProfile.type T} T{ securityContext.seccompProfile.localhostProfile T} T{ securityContext.seLinuxOptions.level T} T{ securityContext.seLinuxOptions.role T} T{ securityContext.seLinuxOptions.type T} T{ securityContext.seLinuxOptions.user T} securityContext\&.sysctls.name securityContext.sysctls.value T{ securityContext.windowsOptions.gmsaCredentialSpec T} T{ securityContext.windowsOptions.hostProcess T} T{ securityContext.windowsOptions.runAsUserName T} .TE .SH Container Fields .TS allbox; l l l l . \fB\fCField\fR \fB\fCSupport\fR name ✅ image ✅ imagePullPolicy ✅ command ✅ args ✅ workingDir ✅ ports.containerPort ✅ ports.hostIP ✅ ports.hostPort ✅ ports\&.name ✅ ports.protocol ✅ env\&.name ✅ env.value ✅ T{ env.valueFrom.configMapKeyRef.key T} ✅ env\&.valueFrom.configMapKeyRef.name ✅ T{ env.valueFrom.configMapKeyRef.optional T} ✅ env.valueFrom.fieldRef ✅ env.valueFrom.resourceFieldRef ✅ env.valueFrom.secretKeyRef.key ✅ env\&.valueFrom.secretKeyRef.name ✅ T{ env.valueFrom.secretKeyRef.optional T} ✅ envFrom\&.configMapRef.name ✅ envFrom.configMapRef.optional ✅ envFrom.prefix envFrom\&.secretRef.name ✅ envFrom.secretRef.optional ✅ volumeMounts.mountPath ✅ volumeMounts\&.name ✅ volumeMounts.mountPropagation volumeMounts.readOnly ✅ volumeMounts.subPath volumeMounts.subPathExpr volumeDevices.devicePath volumeDevices\&.name resources.limits ✅ resources.requests ✅ lifecycle.postStart lifecycle.preStop terminationMessagePath terminationMessagePolicy livenessProbe ✅ readinessProbe startupProbe securityContext.runAsUser ✅ securityContext.runAsNonRoot securityContext.runAsGroup ✅ T{ securityContext.readOnlyRootFilesystem T} ✅ securityContext.procMount securityContext.privileged ✅ T{ securityContext.allowPrivilegeEscalation T} ✅ T{ securityContext.capabilities.add T} ✅ T{ securityContext.capabilities.drop T} ✅ T{ securityContext.seccompProfile.type T} T{ securityContext.seccompProfile.localhostProfile T} T{ securityContext.seLinuxOptions.level T} ✅ T{ securityContext.seLinuxOptions.role T} ✅ T{ securityContext.seLinuxOptions.type T} ✅ T{ securityContext.seLinuxOptions.user T} ✅ T{ securityContext.windowsOptions.gmsaCredentialSpec T} T{ securityContext.windowsOptions.hostProcess T} T{ securityContext.windowsOptions.runAsUserName T} stdin stdinOnce tty .TE .SH PersistentVolumeClaim Fields .TS allbox; l l l l . \fB\fCField\fR \fB\fCSupport\fR volumeName storageClassName ✅ volumeMode accessModes ✅ selector resources.limits resources.requests ✅ .TE .SH ConfigMap Fields .TS allbox; l l l l . \fB\fCField\fR \fB\fCSupport\fR binaryData ✅ data ✅ immutable .TE .SH Deployment Fields .TS allbox; l l l l . \fB\fCField\fR \fB\fCSupport\fR replicas ✅ selector ✅ template ✅ minReadySeconds strategy.type T{ strategy.rollingUpdate.maxSurge T} T{ strategy.rollingUpdate.maxUnavailable T} revisionHistoryLimit progressDeadlineSeconds paused .TE .SH SEE ALSO .PP \fBpodman(1)\fP, \fBpodman-kube(1)\fP, \fBpodman-kube-down(1)\fP, \fBpodman-network-create(1)\fP, \fBpodman-kube-generate(1)\fP, \fBcontainers-certs.d(5)\fP